Что такое вес позиции в системе счисления. Системы счисления

Глава 4. Арифметические основы компьютеров

4.1. Что такое система счисления?

Существуют позиционные и непозиционные системы счисления.

В непозиционных системах счисления вес цифры (т. е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая - 7 единиц, а третья - 7 десятых долей единицы.

Сама же запись числа 757,7 означает сокращенную запись выражения

700 + 50 + 7 + 0,7 = 7 . 10 2 + 5 . 10 1 + 7 . 10 0 + 7 . 10 -1 = 757,7.

Любая позиционная система счисления характеризуется своим основанием.

За основание системы можно принять любое натуральное число - два, три, четыре и т.д. Следовательно, возможно бесчисленное множество позиционных систем : двоичная, троичная, четверичная и т.д. Запись чисел в каждой из систем счисления с основанием q означает сокращенную запись выражения

a n-1 q n-1 + a n-2 q n-2 + ... + a 1 q 1 + a 0 q 0 + a -1 q -1 + ... + a -m q -m ,

где a i - цифры системы счисления; n и m - число целых и дробных разрядов, соответственно.
Например:

4.2. Как порождаются целые числа в позиционных системах счисления?

В каждой системе счисления цифры упорядочены в соответствии с их значениями: 1 больше 0, 2 больше 1 и т.д.

Продвинуть цифру 1 значит заменить её на 2, продвинуть цифру 2 значит заменить её на 3 и т.д. Продвижение старшей цифры (например, цифры 9 в десятичной системе) означает замену её на 0 . В двоичной системе, использующей только две цифры - 0 и 1, продвижение 0 означает замену его на 1, а продвижение 1 - замену её на 0.

Целые числа в любой системе счисления порождаются с помощью Правила счета [44 ]:

Применяя это правило, запишем первые десять целых чисел

    в двоичной системе: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001;

    в троичной системе: 0, 1, 2, 10, 11, 12, 20, 21, 22, 100;

    в пятеричной системе: 0, 1, 2, 3, 4, 10, 11, 12, 13, 14;

    в восьмеричной системе: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11.

4.3. Какие системы счисления используют специалисты для общения с компьютером?

Кроме десятичной широко используются системы с основанием, являющимся целой степенью числа 2, а именно:

    двоичная (используются цифры 0, 1);

    восьмеричная (используются цифры 0, 1, ..., 7);

    шестнадцатеричная (для первых целых чисел от нуля до девяти используются цифры 0, 1, ..., 9, а для следующих чисел - от десяти до пятнадцати - в качестве цифр используются символы A, B, C, D, E, F).

Полезно запомнить запись в этих системах счисления первых двух десятков целых чисел:

Из всех систем счисления особенно проста и поэтому интересна для технической реализации в компьютерах двоичная система счисления .

4.4. Почему люди пользуются десятичной системой, а компьютеры - двоичной?

Люди предпочитают десятичную систему, вероятно, потому, что с древних времен считали по пальцам, а пальцев у людей по десять на руках и ногах. Не всегда и не везде люди пользуются десятичной системой счисления. В Китае, например, долгое время пользовались пятеричной системой счисления.

А компьютеры используют двоичную систему потому, что она имеет ряд преимуществ перед другими системами:

    для ее реализации нужны технические устройства с двумя устойчивыми состояниями (есть ток - нет тока, намагничен - не намагничен и т.п.), а не, например, с десятью, - как в десятичной;

    представление информации посредством только двух состояний надежно и помехоустойчиво ;

    возможно применение аппарата булевой алгебры для выполнения логических преобразований информации;

    двоичная арифметика намного проще десятичной.

Недостаток двоичной системы - быстрый рост числа разрядов , необходимых для записи чисел.

4.5. Почему в компьютерах используются также восьмеричная и шестнадцатеричная системы счисления?

Двоичная система, удобная для компьютеров, для человека неудобна из-за ее громоздкости и непривычной записи.

Перевод чисел из десятичной системы в двоичную и наоборот выполняет машина. Однако, чтобы профессионально использовать компьютер, следует научиться понимать слово машины. Для этого и разработаны восьмеричная и шестнадцатеричная системы.

Числа в этих системах читаются почти так же легко, как десятичные, требуют соответственно в три (восьмеричная) и в четыре (шестнадцатеричная) раза меньше разрядов, чем в двоичной системе (ведь числа 8 и 16 - соответственно, третья и четвертая степени числа 2).

Например:


Например,

4.6. Как перевести целое число из десятичной системы в любую другую позиционную систему счисления?

Пример: Переведем число 75 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Ответ: 75 10 = 1 001 011 2 = 113 8 = 4B 16 .

4.7. Как пеpевести пpавильную десятичную дpобь в любую другую позиционную систему счисления?

Для перевода правильной десятичной дpоби F в систему счисления с основанием q необходимо F умножить на q , записанное в той же десятичной системе, затем дробную часть полученного произведения снова умножить на q, и т. д., до тех пор, пока дpобная часть очередного пpоизведения не станет pавной нулю, либо не будет достигнута требуемая точность изображения числа F в q -ичной системе. Представлением дробной части числа F в новой системе счисления будет последовательность целых частей полученных произведений, записанных в порядке их получения и изображенных одной q -ичной цифрой. Если требуемая точность перевода числа F составляет k знаков после запятой, то предельная абсолютная погрешность при этом равняется q -(k+1) / 2.

Пример. Переведем число 0,36 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

4.8. Как пеpевести число из двоичной (восьмеpичной, шестнадцатеpичной) системы в десятичную?

Перевод в десятичную систему числа x , записанного в q -ичной cистеме счисления (q = 2, 8 или 16) в виде x q = (a n a n-1 ... a 0 , a -1 a -2 ... a -m ) q сводится к вычислению значения многочлена

x 10 = a n q n + a n-1 q n-1 + ... + a 0 q 0 + a -1 q -1 + a -2 q -2 + ... + a -m q -m


средствами десятичной арифметики.

Примеpы:

4.9. Сводная таблица переводов целых чисел из одной системы счисления в другую

Рассмотрим только те системы счисления, которые применяются в компьютерах - десятичную, двоичную, восьмеричную и шестнадцатеричную. Для определенности возьмем произвольное десятичное число, например 46, и для него выполним все возможные последовательные переводы из одной системы счисления в другую. Порядок переводов определим в соответствии с рисунком:

На этом рисунке использованы следующие обозначения:

    в кружках записаны основания систем счисления;

    стрелки указывают направление перевода;

    номер рядом со стрелкой означает порядковый номер соответствующего примера в сводной таблице 4.1.

Например: означает перевод из двоичной системы в шестнадцатеричную, имеющий в таблице порядковый номер 6.

Сводная таблица переводов целых чисел двух разделов - теории статистики... статистики, информатики как дисциплин... КР (электронная версия издания ). " ... . Е.П. Микроэкономическая статистика: Учеб. пособие . - М.: Дело, 2000. ... журнал. Интернет -сайты Росстата...

  • " формирование открытых баз данных информационных ресурсов "

    Отчет

    Справочные издания. Библиографические пособия . Раздел 1. Справочные издания... согласительных процедур. Интернет -версия журнала предоставляет доступ... УРСС / Интернет -магазин состоит из двух отделов: ... специалистов Управления информатики и телекоммуникаций...

  • Существуют позиционные и непозиционные системы счисления.

    В непозиционных системах счисления вес цифры (т. е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти.

    В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая - 7 единиц, а третья - 7 десятых долей единицы.

    Сама же запись числа 757,7 означает сокращенную запись выражения

    700 + 50 + 7 + 0,7 = 7 . 10 2 + 5 . 10 1 + 7 . 10 0 + 7 . 10 -1 = 757,7.

    Любая позиционная система счисления характеризуется своим основанием.

    За основание системы можно принять любое натуральное число - два, три, четыре и т.д. Следовательно, возможно бесчисленное множество позиционных систем : двоичная, троичная, четверичная и т.д. Запись чисел в каждой из систем счисления с основанием q означает сокращенную запись выражения

    a n-1 q n-1 + a n-2 q n-2 + ... + a 1 q 1 + a 0 q 0 + a -1 q -1 + ... + a -m q -m ,

    где a i - цифры системы счисления; n и m - число целых и дробных разрядов, соответственно. Например:

    Какие системы счисления используют специалисты для общения с компьютером?

    Кроме десятичной широко используются системы с основанием, являющимся целой степенью числа 2, а именно:

      двоичная (используются цифры 0, 1);

      восьмеричная (используются цифры 0, 1, ..., 7);

      шестнадцатеричная (для первых целых чисел от нуля до девяти используются цифры 0, 1, ..., 9, а для следующих чисел - от десяти до пятнадцати - в качестве цифр используются символы A, B, C, D, E, F).

    Полезно запомнить запись в этих системах счисления первых двух десятков целых чисел:

    Из всех систем счисления особенно проста и поэтому интересна для технической реализации в компьютерах двоичная система счисления .

    Система счисления - это способ записи чисел с помощью заданного набора специальных знаков (цифр).

    Запись числа в некоторой системе счисления называется кодом числа.

    Отдельную позицию в изображении числа принято называть разрядом , а номер позиции - номером разряда. Число разрядов в записи числа называется разрядностью и совпадает с его длиной.

    Существуют системы позиционные и непозиционные .

    В непозиционных системах счисления вес цифры не зависит от позиции, которую она занимает в числе. Так, например, в римской системе счисления в числе XXXII (тридцать два) вес цифры X в любой позиции равен просто десяти.

    Пример непозиционной системы счисления - римская. В качестве цифр в римской системе используются: I(1), V(5), X(10), L(50), C(100), D(500), M(1000).
    Величина числа в римской системе счисления определяется как сумма или разность цифр в числе. Если меньшая цифра стоит слева от большей, то она вычитается, если справа - прибавляется.
    Пример:

    CCXXXII=232
    IX =9

    В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее позиции в последовательности цифр, изображающих число.
    Любая позиционная сиситема характеризуется своим основанием.
    Основание позиционной системы счисления - это количество различных знаков или символов, используемых для изображения цифр в данной системе.
    За основание можно принять любое натуральное число - два, три, четыре, шестнадцать и т.д. Следовательно, возможно бесконечное множество позиционных систем.

    Примеры позиционной системы счисления - двоичная, десятичная, восьмеричная, шестнадцатеричная системы счисления и т. д.

    Десятичная система счисления.

    В этой системе 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, но информацию несет не только цифра, но и место, на котором цифра стоит (то есть ее позиция). Самая правая цифра числа показывает число единиц, вторая справа - число десятков, следующая - число сотен и т.д.

    Пример:
    333 10 = 3*100 + 3*10+3*1 = 300 + 30 + 3

    Двоичная система счисления.

    В этой системе всего две цифры - 0 и 1. Основание системы - число 2. Самая правая цифра числа показывает число единиц, следующая цифра - число двоек, следующая - число четверок и т.д. Двоичная система счисления позволяет закодировать любое натуральное число - представить его в виде последовательности нулей и единиц.

    Пример:
    1011 2 = 1*2^3 + 0*2*2+1*2^1+1*2^0 =1*8 + 1*2+1=11 10


    Восьмеричная система счисления. В этой системе счисления 8 цифр: 0, 1, 2, 3, 4, 5, 6, 7. Чтобы перевести в двоичную систему, например, число 611 (восьмеричное), надо заменить каждую цифру эквивалентной ей двоичной триадой (тройкой цифр). Легко догадаться, что для перевода многозначного двоичного числа в восьмиричную систему нужно разбить его на триады справа налево и заменить каждую триаду соответствующей восьмеричной цифрой.

    Пример:

    6118 =011 001 001 2

    1 110 011 101 2 =1435 8 (4 триады)

    Шестнадцатиричная система счисления .
    Запись числа в восьмеричной системе счисления достаточно компактна, но еще компактнее она получается в шестнадцатеричной системе. В качестве первых 10 из 16 шестнадцатеричных цифр взяты привычные цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, а вот в качестве остальных 6 цифр используют первые буквы латинского алфавита: A, B, C, D, E, F.Перевод из шестнадцатеричной системы в двоичную и обратно производится аналогочно тому, как это делается для восьмеричной системы.

    Перевод целых чисел в другие системы счисления

    Целое число с основанием 10 переводится в систему счисления с основанием 2 путем последовательного деления числа, на основание 2 до получения остатка. Полученные остатки от деления и последнее частное записываются в порядке, обратном полученному при делении. Сформированное число и будет являться числом с основанием N2.

    Перевод чисел в десятичную систему осуществляется путем составления степенного ряда с основанием той системы, из которой число переводится. Затем подсчитывается значение суммы.

    а) Перевести 10101101 с.с.

    101011012 = 1*2^7+ 0*2^6+ 1*2^5+ 0*2^4+ 1*2^3+ 1*2^2+ 0*2^1+ 1*2^0 = 173

    б) Перевести 7038 .

    7038 = 7*8^2+ 0*8^1+ 3*8^0= 451

    в) Перевести B2E16 .

    B2E16 = 11*16^2+ 2*16^1+ 14*16^0= 2862

    Понравилась статья? Поделиться с друзьями: