Обратные тригонометрические функции и их графики. Обратные тригонометрические функции Статья обратные тригонометрические функции

Определение и обозначения

Арксинус (y = arcsin x ) - это функция, обратная к синусу (x = sin y -1 ≤ x ≤ 1 и множество значений -π/2 ≤ y ≤ π/2 .
sin(arcsin x) = x ;
arcsin(sin x) = x .

Арксинус иногда обозначают так:
.

График функции арксинус

График функции y = arcsin x

График арксинуса получается из графика синуса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом , на котором функция монотонна. Такое определение называют главным значением арксинуса.

Арккосинус, arccos

Определение и обозначения

Арккосинус (y = arccos x ) - это функция, обратная к косинусу (x = cos y ). Он имеет область определения -1 ≤ x ≤ 1 и множество значений 0 ≤ y ≤ π .
cos(arccos x) = x ;
arccos(cos x) = x .

Арккосинус иногда обозначают так:
.

График функции арккосинус


График функции y = arccos x

График арккосинуса получается из графика косинуса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом , на котором функция монотонна. Такое определение называют главным значением арккосинуса.

Четность

Функция арксинус является нечетной:
arcsin(- x) = arcsin(-sin arcsin x) = arcsin(sin(-arcsin x)) = - arcsin x

Функция арккосинус не является четной или нечетной:
arccos(- x) = arccos(-cos arccos x) = arccos(cos(π-arccos x)) = π - arccos x ≠ ± arccos x

Свойства - экстремумы, возрастание, убывание

Функции арксинус и арккосинус непрерывны на своей области определения (см. доказательство непрерывности). Основные свойства арксинуса и арккосинуса представлены в таблице.

y = arcsin x y = arccos x
Область определения и непрерывность - 1 ≤ x ≤ 1 - 1 ≤ x ≤ 1
Область значений
Возрастание, убывание монотонно возрастает монотонно убывает
Максимумы
Минимумы
Нули, y = 0 x = 0 x = 1
Точки пересечения с осью ординат, x = 0 y = 0 y = π/2

Таблица арксинусов и арккосинусов

В данной таблице представлены значения арксинусов и арккосинусов, в градусах и радианах, при некоторых значениях аргумента.

x arcsin x arccos x
град. рад. град. рад.
- 1 - 90° - 180° π
- - 60° - 150°
- - 45° - 135°
- - 30° - 120°
0 0 90°
30° 60°
45° 45°
60° 30°
1 90° 0

≈ 0,7071067811865476
≈ 0,8660254037844386

Формулы

См. также: Вывод формул обратных тригонометрических функций

Формулы суммы и разности


при или

при и

при и


при или

при и

при и


при

при


при

при

Выражения через логарифм, комплексные числа

См. также: Вывод формул

Выражения через гиперболические функции

Производные

;
.
См. Вывод производных арксинуса и арккосинуса > > >

Производные высших порядков :
,
где - многочлен степени . Он определяется по формулам:
;
;
.

См. Вывод производных высших порядков арксинуса и арккосинуса > > >

Интегралы

Делаем подстановку x = sin t . Интегрируем по частям, учитывая что -π/2 ≤ t ≤ π/2 , cos t ≥ 0 :
.

Выразим арккосинус через арксинус:
.

Разложение в ряд

При |x| < 1 имеет место следующее разложение:
;
.

Обратные функции

Обратными к арксинусу и арккосинусу являются синус и косинус , соответственно.

Следующие формулы справедливы на всей области определения:
sin(arcsin x) = x
cos(arccos x) = x .

Следующие формулы справедливы только на множестве значений арксинуса и арккосинуса:
arcsin(sin x) = x при
arccos(cos x) = x при .

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

См. также:

На этом уроке мы рассмотрим особенности обратных функций и повторим обратные тригонометрические функции . Отдельно будут рассмотрены свойства всех основных обратных тригонометрических функций: арксинуса, арккосинуса, арктангенса и арккотангенса.

Данный урок поможет Вам подготовиться к одному из типов задания В7 и С1 .

Подготовка к ЕГЭ по математике

Эксперимент

Урок 9. Обратные тригонометрические функции.

Теория

Конспект урока

Вспомним, когда мы встречаемся с таким понятием как обратная функция. Например, рассмотрим функцию возведения в квадрат. Пусть у нас есть квадратная комната со сторонами по 2 метра и мы хотим вычислить ее площадь. Для этого по формуле пощади квадрата возводим двойку в квадрат и в результате получаем 4 м 2 . Теперь представим себе обратную задачу: мы знаем площадь квадратной комнаты и хотим найти длины ее сторон. Если мы знаем, что площадь равна все тем же 4 м 2 , то выполним обратное действие к возведению в квадрат - извлечение арифметического квадратного корня, который нам даст значение 2 м.

Таким образом, для функции возведения числа в квадрат обратной функцией является извлечение арифметического квадратного корня.

Конкретно в указанном примере у нас не возникло проблем с вычислением стороны комнаты, т.к. мы понимаем, что это положительное число. Однако если оторваться от этого случая и рассмотреть задачу более общим образом: «Вычислить число, квадрат которого равен четырем», мы столкнемся с проблемой - таких чисел два. Это 2 и -2, т.к. тоже равна четырем. Получается, что обратная задача в общем случае решается неоднозначно, и действие определения числа, которое в квадрате дало известное нам число? имеет два результата. Это удобно показать на графике:

А это значит, что такой закон соответствия чисел мы не можем назвать функцией, поскольку для функции одному значению аргумента соответствует строго одно значение функции.

Для того чтобы ввести именно обратную функцию к возведению в квадрат и было предложено понятие арифметического квадратного корня, который дает только неотрицательные значения. Т.е. для функции обратной функцией считается .

Аналогично существуют и функции, обратные к тригонометрическим, их называют обратными тригонометрическими функциями . К каждой из рассмотренных нами функций существует своя обратная, их называют: арксинус, арккосинус, арктангенс и арккотангенс .

Эти функции решают задачу вычисления углов по известному значению тригонометрической функции. Например, с использованием таблицы значений основных тригонометрических функций можно вычислить синус какого угла равен . Находим это значение в строке синусов и определяем, какому углу оно соответствует. Первое, что хочется ответить, что это угол или , но если у вас в распоряжении таблица значений до , вы тут же заметите еще одного претендента на ответ, - это угол или . А если мы вспомним о периоде синуса, то поймем, что углов, при которых синус равен , бесконечное множество. И такое множество значений углов, соответствующих данному значению тригонометрической функции, будет наблюдаться и для косинусов, тангенсов и котангенсов, т.к. все они обладают периодичностью.

Т.е. мы сталкиваемся с той же проблемой, которая была для вычисления значения аргумента по значению функции для действия возведения в квадрат. И в данном случае для обратных тригонометрических функций было введено ограничение области значений, которые они дают при вычислении. Это свойство таких обратных функций называют сужением области значений , и оно необходимо для того, чтобы их можно было называть функциями.

Для каждой из обратных тригонометрических функций диапазон углов, которые она возвращает, выбран свой, и мы их рассмотрим отдельно. Например, арксинус возвращает значения углов в диапазоне от до .

Умение работать с обратными тригонометрическими функциями нам пригодится при решении тригонометрических уравнений.

Сейчас мы укажем основные свойства каждой из обратных тригонометрических функций. Кто захочет познакомиться с ними более подробно, обратитесь к главе «Решение тригонометрических уравнений» в программе 10 класса.

Рассмотрим свойства функции арксинус и построим ее график.

Определение. Арксинусом числа x

Основные свойства арксинуса:

1) при ,

2) при .

Основные свойства функции арксинус:

1) Область определения ;

2) Область значений ;

3) Функция нечетная Эту формулу желательно отдельно запомнить, т.к. она полезна для преобразований. Также отметим, что из нечетности следует симметричность графика функции относительно начала координат;

Построим график функции :

Обратим внимание, что никакой из участков графика функции не повторяется, а это означает, что арксинус не является периодической функцией, в отличие от синуса. То же самое будет относиться и ко всем остальным аркфункциям.

Рассмотрим свойства функции арккосинус и построим ее график.

Определение. Арккосинусом числа x называют такое значение угла y, для которого . Причем как ограничения на значения синуса, а как выбранный диапазон углов.

Основные свойства арккосинуса:

1) при ,

2) при .

Основные свойства функции арккосинус:

1) Область определения ;

2) Область значений ;

3) Функция не является ни четной ни нечетной, т.е. общего вида . Эту формулу тоже желательно запомнить, она пригодится нам позже;

4) Функция монотонно убывает.

Построим график функции :

Рассмотрим свойства функции арктангенс и построим ее график.

Определение. Арктангенсом числа x называют такое значение угла y, для которого . Причем т.к. ограничений на значения тангенса нет, а как выбранный диапазон углов.

Основные свойства арктангенса:

1) при ,

2) при .

Основные свойства функции арктангенс:

1) Область определения ;

2) Область значений ;

3) Функция нечетная . Эта формула тоже полезна, как и аналогичные ей. Как в случае с арксинусом, из нечетности следует симметричность графика функции относительно начала координат;

4) Функция монотонно возрастает.

Построим график функции :

В ряде задач математики и её приложений требуется по известному значению тригонометрической функции найти соответствующее значение угла, выраженное в градусной или в радианной мере. Известно, что одному и тому же значению синуса соответствует бесконечное множество углов, например, если $\sin α=1/2,$ то угол $α$ может быть равен и $30°$ и $150°,$ или в радианной мере $π/6$ и $5π/6,$ и любому из углов, который получается из этих прибавлением слагаемого вида $360°⋅k,$ или соответственно $2πk,$ где $k$ - любое целое число. Это становится ясным и из рассмотрения графика функции $y=\sin x$ на всей числовой прямой (см. рис. $1$): если на оси $Oy$ отложить отрезок длины $1/2$ и провести прямую, параллельную оси $Ox,$ то она пересечет синусоиду в бесконечном множестве точек. Чтобы избежать возможного разнообразия ответов, вводятся обратные тригонометрические функции, иначе называемые круговыми, или аркфункциями (от латинского слова arcus - «дуга»).

Основным четырем тригонометрическим функциям $\sin x,$ $\cos x,$ $\mathrm{tg}\,x$ и $\mathrm{ctg}\,x$ соответствуют четыре аркфункции $\arcsin x,$ $\arccos x,$ $\mathrm{arctg}\,x$ и $\mathrm{arcctg}\,x$ (читается: арксинус, арккосинус, арктангенс, арккотангенс). Рассмотрим функции \arcsin x и \mathrm{arctg}\,x, поскольку две другие выражаются через них по формулам:

$\arccos x = \frac{π}{2} − \arcsin x,$ $\mathrm{arcctg}\,x = \frac{π}{2} − \mathrm{arctg}\,x.$

Равенство $y = \arcsin x$ по определению означает такой угол $y,$ выраженный в радианной мере и заключенный в пределах от $−\frac{π}{2}$ до $\frac{π}{2},$ синус которого равен $x,$ т. е. $\sin y = x.$ Функция $\arcsin x$ является функцией, обратной функции $\sin x,$ рассматриваемой на отрезке $\left[−\frac{π}{2},+\frac{π}{2}\right],$ где эта функция монотонно возрастает и принимает все значения от $−1$ до $+1.$ Очевидно, что аргумент $y$ функции $\arcsin x$ может принимать значения лишь из отрезка $\left[−1,+1\right].$ Итак, функция $y=\arcsin x$ определена на отрезке $\left[−1,+1\right],$ является монотонно возрастающей, и её значения заполняют отрезок $\left[−\frac{π}{2},+\frac{π}{2}\right].$ График функции показан на рис. $2.$

При условии $−1 ≤ a ≤ 1$ все решения уравнения $\sin x = a$ представим в виде $x=(−1)^n \arcsin a + πn,$ $n=0,±1,± 2,… .$ Например, если

$\sin x = \frac{\sqrt{2}}{2}$ то $x = (−1)^n \frac{π}{4}+πn,$ $n = 0, ±1, ±2, … .$

Соотношение $y=\mathrm{arcctg}\,x$ определено при всех значениях $x$ и по определению означает, что угол $y,$ выраженный в радианной мере, заключей в пределах

$−\frac{π}{2}

и тангенс этого угла равен x, т. е. $\mathrm{tg}\,y = x.$ Функция $\mathrm{arctg}\,x$ определена на всей числовой прямой, является функцией, обратной функции $\mathrm{tg}\,x$, которая рассматривается лишь на интервале

$−\frac{π}{2}

Функция $у = \mathrm{arctg}\,x$ монотонно возрастающая, её график дан на рис. $3.$

Все решения уравнения $\mathrm{tg}\,x = a$ могут быть записаны в виде $x=\mathrm{arctg}\,a+πn,$ $n=0,±1,±2,… .$

Заметим, что обратные тригонометрические функции широко используются в математическом анализе. Например, одной из первых функций, для которых было получено представление бесконечным степенным рядом, была функция $\mathrm{arctg}\,x.$ Из этого ряда Г. Лейбниц при фиксированном значении аргумента $x=1$ получил знаменитое представление числа к бесконечным рядом

Функция, обратная косинусу

Областью значений функции y=cos x (см. рис. 2) является отрезок. На отрезке функция непрерывна и монотонно убывает.

Рис. 2

Значит, на отрезке определена функция, обратная функции y=cos x. Эту обратную функцию называют арккосинусом и обозначают y=arccos x .

Определение

Aрккосинусом числа а, если |а|1, называют угол, косинус которого принадлежит отрезку; его обозначают arccos а.

Таким образом, arccos а есть угол, удовлетворяющий следующим двум условиям: сos (arccos a)=a, |а|1; 0? arccos a ?р.

Например, arccos, так как cos и; arccos, так как cosи.

Функция y = arccos x (рис. 3) определена на отрезке, областью ее значений является отрезок. На отрезке функция y=arccos x непрерывна и монотонно убывает от р до 0 (поскольку y=cos х - непрерывная и монотонно убывающая функция на отрезке); на концах отрезка она достигает своих экстремальных значений: arccos(-1)= р, arccos 1= 0. Отметим, что arccos 0 = . График функции y = arccos x (см. рис. 3) симметричен графику функции y = cos x относительно прямой y=x .

Рис. 3

Покажем, что имеет место равенство arccos(-x) = р-arccos x.

В самом деле, по определению 0 ? arcсos х? р. Умножая на (-1) все части последнего двойного неравенства, получаем - р? arcсos х? 0. Прибавляя р ко всем частям последнего неравенства, находим, что 0? р-arccos х? р.

Таким образом, значения углов arccos(-х) и р - arccos х принадлежат одному и тому же отрезку. Поскольку на отрезке косинус монотонно убывает, то на нем не может быть двух различных углов, имеющих равные косинусы. Найдем косинусы углов arccos(-х) и р-arccos х. По определению cos (arccos x) = - x, по формулам приведения и по определению имеем: cos (р - - arccos х) = - cos (arccos х)= - х. Итак, косинусы углов равны, значит, равны и сами углы.

Функция, обратная синусу

Рассмотрим функцию y=sin х (рис. 6), которая на отрезке [-р/2;р/2] возрастающая, непрерывная и принимает значения из отрезка [-1; 1]. Значит, на отрезке [- р/2; р/2] определена функция, обратная функции y=sin x.

Рис. 6

Эту обратную функцию называют арксинусом и обозначают y=arcsin x. Введем определение арксинуса числа а .

Арксинусом числа а, если называют угол (или дугу), синус которого равен числу а и который принадлежит отрезку [-р/2; р/2]; его обозначают arcsin а.

Таким образом, arcsin а есть угол, удовлетворяющий следующим условиям: sin (arcsin a)=a, |a| ?1; -р/2 ? arcsin а? р/2. Например, так как sin и [- р/2; р/2]; arcsin , так как sin = и [- р/2; р/2].

Функция y=arcsin х (рис. 7) определена на отрезке [- 1; 1], областью ее значений является отрезок [-р/2;р/2]. На отрезке [- 1; 1] функция y=arcsin x непрерывна и монотонно возрастает от -р/2 до р/2 (это следует из того, что функция y=sin x на отрезке [-р/2; р/2] непрерывна и монотонно возрастает). Наибольшее значение она принимает при x =1: arcsin 1 = р/2, а наименьшее - при х = -1: arcsin (-1) = -р/2. При х = 0 функция равна нулю: arcsin 0 = 0 .

Покажем, что функция y = arcsin x является нечетной, т.е. arcsin (-х) = - arcsin х при любом х [- 1; 1].

Действительно, по определению, если |x| ?1, имеем: - р/2 ? arcsin x ? ? р/2. Таким образом, углы arcsin (-х) и - arcsin х принадлежат одному и тому же отрезку [- р/2; р/2].

Найдем синусы этих углов: sin (arcsin(-х)) = - х (по определению); поскольку функция y=sin x нечетная, то sin (-arcsin х)= - sin (arcsin x)= - х. Итак, синусы углов, принадлежащих одному и тому же промежутку [-р/2; р/2], равны, значит, равны и сами углы, т.е. arcsin (-х)= - arcsin х. Значит, функция y=arcsin x - нечетная. График функции y=arcsin x симметричен относительно начала координат.

Покажем, что arcsin (sin x) = х для любого х [-р/2; р/2].

Действительно, по определению -р/2 ? arcsin (sin x) ? р/2, а по условию -р/2 ? x ? р/2. Значит, углы х и arcsin (sin x) принадлежат одному и тому же промежутку монотонности функции y=sin x. Если синусы таких углов равны, то равны и сами углы. Найдем синусы этих углов: для угла х имеем sin x, для угла arcsin (sin x) имеем sin (arcsin(sin x)) = sin x. Получили, что синусы углов равны, следовательно, и углы равны, т.е. arcsin (sin x) = х. .

Рис. 7

Рис. 8

График функции arcsin (sin|x|) получается обычными преобразованиями, связанными с модулем, из графика y=arcsin (sin x) (изображен штриховой линией на рис. 8). Искомый график y=arcsin (sin |x-/4|) получается из него сдвигом на /4 вправо вдоль оси абсцисс (изображен сплошной линией на рис. 8)

Функция, обратная тангенсу

Функция y=tg x на промежутке принимает все числовые значения: E (tg x)=. На этом промежутке она непрерывна и монотонно возрастает. Значит, на промежуткеопределена функция, обратная функции y = tg x. Эту обратную функцию называют арктангенсом и обозначают y = arctg x .

Арктангенсом числа а называют угол из промежутка, тангенс которого равен а. Таким образом, arctg a есть угол, удовлетворяющий следующим условиям: tg (arctg a) = a и 0 ? arctg a ? р.

Итак, любому числу х всегда соответствует единственное значение функции y = arctg x (рис. 9) .

Очевидно, что D (arctg x) = , E (arctg x) = .

Функция y = arctg x является возрастающей, поскольку функция y = tg x возрастает на промежутке. Нетрудно доказать, что arctg(-x) = - arctgx, т.е. что арктангенс - нечетная функция.

Рис. 9

График функции y = arctg x симметричен графику функции y = tg x относительно прямой y = x, график y = arctg x проходит через начало координат (ибо arctg 0 = 0) и симметричен относительно начала координат (как график нечетной функции).

Можно доказать, что arctg (tg x) = x, если x.

Функция, обратная котангенсу

Функция y = ctg x на промежутке принимает все числовые значения из промежутка. Область ее значений совпадает с множеством всех действительных чисел. В промежутке функция y = ctg x непрерывна и монотонно возрастает. Значит, на этом промежутке определена функция, обратная функции y = ctg x. Функцию, обратную котангенсу, называют арккотангенсом и обозначают y = arcctg x .

Арккотангенсом числа а называют угол, принадлежащий промежутку, котангенс которого равен а.

Таким образом, аrcctg a есть угол, удовлетворяющий следующим условиям: ctg (arcctg a)=a и 0 ? arcctg a ? р.

Из определения обратной функции и определения арктангенса следует, что D (arcctg x) = , E (arcctg x) = . Арккотангенс является убывающей функцией, поскольку функция y = ctg x убывает в промежутке.

График функции y = arcctg x не пересекает ось Ох, так как y > 0 R. При х = 0 y = arcctg 0 =.

График функции y = arcctg x изображен на рисунке 11.

Рис. 11

Отметим, что для всех действительных значений х верно тождество: arcctg(-x) = р-arcctg x.

Обратные тригонометрические функции (круговые функции, аркфункции) — математические функции, которые являются обратными к тригонометрическим функциям .

К ним обычно относят 6 функций:

  • арксинус (обозначение: arcsin x ; arcsin x — это угол, sin которого равен x ),
  • арккосинус (обозначение: arccos x ; arccos x — это угол, косинус которого равняется x и так далее),
  • арктангенс (обозначение: arctg x или arctan x ),
  • арккотангенс (обозначение: arcctg x или arccot x или arccotan x ),
  • арксеканс (обозначение: arcsec x ),
  • арккосеканс (обозначение: arccosec x или arccsc x ).

Арксинус (y = arcsin x ) - обратная функция к sin (x = sin y . Другими словами возвращает угол по значению его sin .

Арккосинус (y = arccos x ) - обратная функция к cos (x = cos y cos .

Арктангенс (y = arctg x ) - обратная функция к tg (x = tg y ), которая имеет область определения и множество значений . Другими словами возвращает угол по значению его tg .

Арккотангенс (y = arcctg x ) - обратная функция к ctg (x = ctg y ), которая имеет область определения и множество значений . Другими словами возвращает угол по значению его ctg .

arcsec - арксеканс, возвращает угол по значению его секанса.

arccosec - арккосеканс, возвращает угол по значению его косеканса.

Когда обратная тригонометрическая функция не определяется в указанной точке, значит, ее значение не появится в итоговой таблице. Функции arcsec и arccosec не определяются на отрезке (-1,1), а arcsin и arccos определяются только на отрезке [-1,1].

Название обратной тригонометрической функции образуется от названия соответствующей ей тригонометрической функции прибавлением приставки «арк-» (от лат. arc us — дуга). Это связано с тем, что геометрически значение обратной тригонометрической функции связывают с длиной дуги единичной окружности (либо углом, который стягивает эту дугу), которая соответствует тому либо другому отрезку.

Иногда в зарубежной литературе, как и в научных/инженерных калькуляторах , используют обозначениями вроде sin −1 , cos −1 для арксинуса, арккосинуса и тому подобное, — это считается не полностью точным, т.к. вероятна путаница с возведением функции в степень −1 −1 » (минус первая степень) определяет функцию x = f -1 (y) , обратную функции y = f (x) ).

Основные соотношения обратных тригонометрических функций.

Здесь важно обратить внимание на интервалы, для которых справедливы формулы.

Формулы, связывающие обратные тригонометрические функции.

Обозначим любое из значений обратных тригонометрических функций через Arcsin x , Arccos x , Arctan x , Arccot x и сохраним обозначения: arcsin x , arcos x , arctan x , arccot x для их главных значений, тогда связь меж ними выражается такими соотношениями.

Понравилась статья? Поделиться с друзьями: