Постсинаптические потенциалы в нервных синапсах их природа. Образование возбуждающих или тормозных постсинаптических потенциалов

Открытие неспецифических каналов для катионов при взаимодействии ACh с ACh-рецептором приводит к сильному входящему току ионов Na+ и более слабому выходящему току ионов К+ на постсинаптической мембране. В конечном счете, в клетку течет больше положительных зарядов. Возникает локальная деполяризация мембраны , которая называется возбуждающим постсинаптическим потенциалом (ВПСП).

Взаимодействуя с рецептором, молекулы ACh открывают неспецифические ионные каналы в постсинаптической мембране клетки так, что повышается их способность к проводимости для одновалентных катионов. Какие катионы проходят через каналы, зависит от электрохимических градиентов. Равновесный потенциал для натрия равен +55 мВ, а потенциал мембраны постсинаптической клетки лежит в диапазоне от -60 до -80 мВ. Таким образом, существует сильная движущая сила для натрия, и его ионы устремляются внутрь клетки и деполяризуют ее мембрану ( рис. 21.5 , рис. 21.7). С другой стороны, канал проходим и для ионов К+, для которых сохраняется незначительный электрохимический градиент, направленный из внутриклеточной области к внеклеточной среде. Так как равновесный потенциал ионов К+ равен примерно -90 мВ, через постсинаптическую мембрану проходят и они, тем самым слегка противодействуя деполяризации, обусловленной входящим током ионов Na+. Работа данных каналов ведет к базовому входящему току положительных ионов и, следовательно, к деполяризации постсинаптической мембраны (ВПСП). На концевой пластинке нервно-мышечного синапса ВПСП называют также потенциалом концевой пластинки (ПКП) . Так как участвующие ионные токи зависят от разности равновесного потенциала и потенциала мембраны, то при уменьшенном потенциале покоя мембраны ток ионов Na+ ослабевает, а ток ионов К+ увеличивается, поэтому амплитуда ВПСП уменьшается.

Ионные токи, участвующие в возникновении ВПСП, ведут себя иначе нежели токи Na+ и К+ во время генерации потенциала действия. Причина в том, что в этом механизме участвуют другие ионные каналы с другими свойствами. В то время как при потенциале действия активируются потенциалуправляемые ионные каналы и с увеличивающейся деполяризацией открываются следующие каналы, так что процесс деполяризации усиливает сам себя, проводимость трансмиттеруправляемых (лигандуправляемых) каналов зависит только от количества молекул трансмиттера, связавшихся с молекулами рецептора (в результате чего открываются трансмиттеруправляемые ионные каналы), и, следовательно, от числа открытых ионных каналов. Амплитуда ВПСП лежит в диапазоне от 100 мкВ до 10 мВ. В зависимости от вида синапса общая продолжительность ВПСП находится в диапазоне от 5 до 100 мс.

Прежде всего, в зоне синапса локально образовавшийся ВПСП пассивно электротонически распространяется по всей постсинаптической мембране клетки. Это распространение не подчиняется закону "все или ничего". Если большое число синапсов возбуждается одновременно или почти одновременно, то возникает явление так называемой суммации, которое проявляется в виде возникновения ВПСП существенно большей амплитуды, что может деполяризовать мембрану всей постсинаптической клетки. Если величина этой деполяризации достигает в области постсинаптической мембраны определенного порогового значения (10 мВ или больше), то на аксонном холмике нервной клетки молниеносно открываются потенциалуправляемые Na+-каналы и она генерирует потенциал действия, проводящийся вдоль ее аксона. В случае моторной концевой пластинки это приводит к мышечному сокращению. От начала ВПСП до образования потенциала действия проходит еще около 0,3 мс, так что при обильном освобождении трансмиттера постсинаптический потенциал может появиться уже через 0,5-0,6 мс после пришедшего в пресинаптическую область потенциала действия.

Постсинаптические потенциалы. Их отличие от ПД. Суммация ЦНС

Действие медиатора на постсинаптическую мембрану химического синапса приводит к возникновению в ней постсинаптического потенциала. Постсинаптические потенциалы могут быть двух типов:

· деполяризующие (возбуждающие);

· гиперполяризующие (тормозные).

Возбуждающие постсинаптические потенциалы (ВПСП) обусловлены суммарным входящим током положительных зарядов внутрь клетки. Такой ток может возникнуть в результате повышения проводимости мембраны для натрия, калия и, возможно, других ионов, например, кальция. В результате мембранный потенциал смещается по направлению к нулю (становится менее отрицательным. *Постсинаптические потенциалы* - градуальные реакции (их амплитуда зависит от количества выделившегося медиатора или силы стимула). Этим они отличаются от потенциала действия, который подчиняется закону «все или ничего».

ВПСП необходим для генерации нервного импульса (ПД). Это происходит в том случае, если ВПСП достигнет порового значения. После этого процессы становятся необратимыми, и возникает ПД.

Если в мембране открываются каналы, обеспечивающие суммарный выходящий ток положительных зарядов (ионов калия) или входящий ток отрицательных зарядов (ионов хлора), то в клетке развивается тормозный постсинаптический потенциал (ТПСП ) . Такие токи приведут к удержанию мембранного потенциала на уровне потенциала покоя или к некоторой гиперполяризации.

Прямое химическое синаптическое торможение происходит при активации каналов для отрицательно заряженных ионов хлора. Стимуляция тормозных входов вызывает небольшую гиперполяризацию клетки – тормозный постсинаптический потенциал (ТПСП). В качестве медиаторов, вызывающих ТПСП, обнаружены глицин и гамма-аминомасляная кислота (ГАМК); их рецепторы связаны с каналами для хлора, и при взаимодействии этих медиаторов со своими рецепторами происходит движение ионов хлора внутрь клетки и увеличение мембранного потенциала (до -90 или -100 мВ). Этот процесс называется постсинаптическое торможение .

Однако в ряде случаев торможение не может быть объяснено только в рамках постсинаптического изменения проводимости. Дж. Экклсом было открыто пресинаптическое торможение . В результате пресинаптического торможения происходит уменьшение высвобождения медиатора из возбуждающих окончаний. При пресинаптическом торможении тормозные аксоны устанавливают синаптический контакт с окончаниями возбуждающих аксонов. В качестве медиатора пресинаптического торможения чаще всего встречается ГАМК. В результате действия ГАМК на пресинаптическое окончание также происходит значительное увеличение проводимости для хлора и в результате снижение амплитуды ПД в пресинаптическом окончании.



Функциональное значение этих двух видов торможений в ЦНС сильно различается. Постсинаптическое торможение уменьшает возбудимость всей клетки в целом, делая ее менее чувствительной ко всем возбуждающим входам. Пресинаптическое торможение гораздо более специфично и избирательно. Оно направлено на определенный вход, давая возможность клетке интегрировать информацию из других входов.


В нервных центрах осуществляется суммация возбуждений. Различают два вида суммации:

временная или последовательная , если импульсы возбуждения приходят к нейрону по одному и тему же пути через один синапс с интервалом меньше, чем время полной реполяризации постсинаптической мембраны. В этих условиях ВПСП на постсинаптической мембране суммируются и доводят ее деполяризацию до уровня, достаточного для генерации нейроном потенциала действия;

пространственная или одновременная - наблюдается в том случае, когда импульсы возбуждения поступают к нейрону одновременно через разные синапсы (рис. 10).

Медиатор, находящийся в пузырьках, выделяется в синаптическую щель с помощью экзоцитоза Его выделение происходит небольшими порциями – квантами . Небольшое количество квантов выходит из окончания и в состоянии покоя. Когда нервный импульс, т.е. ПД, достигает пресинаптического окончания, происходит деполяризация его пресинаптической мембраны. Открываются ее кальциевые каналы и ионы кальция входят в синаптическую бляшку. Начинается выделение большого количества квантов нейромедиатора. Молекулы медиатора диффундируют через синаптическую щель к постсинаптической мембране и взаимодействуют с её хеморецепторами. В результате образования комплексов медиатор-рецептор, в субсинаптической мембране начинается синтез так называемых вторичных посредников (в частности, цАМФ). Эти посредники активируют ионные каналы постсинаптической мембраны. Поэтому такие каналы называют хемозависимыми или рецепторуправляемыми. Т.е. они открываются при действии ФАВ на хеморецепторы. В результате открывания каналов изменяется потенциал субсинаптической мембраны. Такое изменение называется постсинаптическим потенциалом.

В ЦНС возбуждающими являются холин-, адрен-, дофамин-, серотонинергические синапсы и некоторые другие. При взаимодействии их медиаторов с соответствующими рецепторами, открываются хемозависимые натриевые каналы. Ионы натрия входят в клетку через субсинаптическую мембрану. Происходит ее местная или распространяющаяся деполяризация. Эта деполяризация называется возбуждающим постсинаптическим потенциалом (ВПСП).

Тормозными являются глицин- и ГАМК-ергические синапсы. При связывании медиатора с хеморецепторами, активируются калиевые или хлорные хемозависимые каналы. В результате ионы калия выходят из клетки через мембрану.

Ионы хлора входят через нее. Возникает только местная гиперполяризация субсинаптической мембраны . Она называется тормозным постсинаптическим потенциалом (ТПСП).

Величина ВПСП и ТПСП определяется количеством квантов медиатора, выделившихся из терминали, а, следовательно, частотой нервных импульсов. Т.е. синаптическая передача не подчиняется закону "все или ничего". Если количество выделившегося возбуждающего медиатора достаточно велико, то в субсинаптической мембране может генерироваться распространяющийся ПД. ТПСП, независимо от количества медиатора не распространяется за пределы субсинаптической мембраны.

ВОПРОС 26. Понятие о нервном центре, его функциях и свойствах

Н. центр – совокупность структур ЦНС, координированная деятельность которых обеспечивает регуляцию отдельных функций организма или определенный рефлекторный акт. Функциональный нервный центр может быть локализован в разных анатомических структурах. Например дыхат центр представлен нервными клетками, расположенными в спинном, продолговатом, промежуточном мозге, коре головного мозга.

В зависимости от выполняемой функции различают:

чувствительные нервные центры;

нервные центры вегетативных функций;

двигательные нервные центры и др.

Свойства :

2)Иррадиация возбуждения . В н центрах изменяется направление распространения возбуждения в зависимости от силы раздражителя и функционального состояния центральных нейронов. Увеличение силы раздражителя приводит к расширению области вовлекаемых в возбуждение центральных нейронов – т. е. иррадиации возбуждения.

3)Суммация возбуждения . Процесс пространственной суммации афферентных потоков возбуждения от разл участков рецептивного поля облегчается благодаря наличию на мембране н клетки сотен и тысяч синаптичаских контактов. Процесс временной суммации в ответ на многократное возбуждение одних и тех же рецепторов обусловлены суммацией ВПСП на постсинаптической мембране.

ПОЯСНЯЮ : По́стсинапти́ческий потенциа́л (ПСП) - это вре́менное изменение потенциала постсинаптической мембраны в ответ на сигнал, поступивший с пресинаптического нейрона. Различают:

возбуждающий постсинаптический потенциал (ВПСП), обеспечивающий деполяризацию постсинаптической мембраны, и

тормозный постсинаптический потенциал (ТПСП), обеспечивающий гиперполяризацию постсинаптической мембраны.

Отдельные ПСП обычно невелики по амплитуде и не вызывают потенциалов действия в постсинаптической клетке, однако в отличие от потенциалов действия они градуальны и могут суммироваться. Выделяют два варианта суммации:

временная - объединение пришедших по одному каналу сигналов (при поступлении нового импульса до затухания предшествующего)

пространственная - наложение ВПСП соседних синапсов

4) Наличие задержки .

Длительность рефлекторной реакции зависит от 2 факторов: cкорости движения возбуждения по нервным проводникам и времени распространения возбуждения через синапс. Основное время рефлекса приходится на синаптическую передачу возбуждения- синаптическая задержка. У человека она равна примерно 1 мс.

5)Высокая утомляемость . Длительное повторное раздражение рецептивного поля рефлекса приводит к ослаблению рефлекторной реакции вплоть до исчезновения. Это связано с деятельностью синапсов: истощение запаса медиатора, уменьшаются энергетических ресурсы, происходит адаптация постсинаптического рецептора к медиатору.

6)Тонус . В покое определенное количество нервных клеток находится в состоянии постоянного возбуждения и генерирует фоновые импульсные токи.

7)Пластичность . Функциональная подвижность нервного центра может модифицировать картину осуществляемых рефлекторных реакций.

8)Конвергенция . Нервные центры высших отделов мозга - мощные коллекторы афферентной информации. В них содержится много нервных клеток, реагирующих на разные стимулы (свет, звук и др.)

9) Интеграция в нервных центрах . Для осуществления сложных координированных приспособительных реакций организма происходит образование функциональных объединений нервных центров.

10) Свойство доминанты . Доминантный очаг – временно господствующий очаг повышенной возбудимости в н центре. В нем устанавливается определенный уровень стационарного возбуждения, способствующий суммированию ранее подпороговых возбуждений и переводу на оптимальный для данных условий ритм работы. Домин. Очаг угнетает соседние очаги возбуждения.

11) Цефализация н. системы . Тенденция к перемещению функций регуляции и координации в головные отделы ЦНС.

ВОПРОС 27. Явление суммации возбуждения в нервных центрах, ее виды, значение, механизм. Свойства ВПСП и их роль в формировании суммации. (Примечане автора: Ребят, я извеняюсь за эту хрень, но это все что я могла найти. В учебнике не нашла)

Суммация возбуждения. В работе нервных центров значительное место занимают процессы пространственной и временной суммации возбуждения, основным нервным субстратом которой является постсинаптическая мембрана. Процесс пространственной суммации афферентных потоков возбуждения облегчается наличием на мембране нервной клетки сотен и тысяч синаптических контактов. Процессы временной суммации обусловлены суммацией ВПСП на постсинаптической мембране.

В нервном волокне каждое одиночное раздражение (если оно не подпороговой и не свехпороговой силы) вызывает один импульс возбуждения. В нервных же центрах, как показал впервые И.М.Сеченов, одиночный импульс в афферентных волокнах обычно не вызывает возбуждения, т.е. не передается на эфферентные нейроны. Чтобы вызвать рефлекс необходимо быстрое нанесение допороговых раздражений одно за другим. Это явление получило название временной или последовательной суммации. Ее сущность состоит в следующем. Квант медиатора, выбрасываемого окончанием аксона при нанесении одного допорогового раздражения, слишком мал для того, чтобы вызвать возбуждающий постсинаптический потенциал, достаточный для критической деполяризации мембраны. Если же к одному и тому же синапсу идут быстро следующие один за другим допороговые импульсы, происходит суммирование квантов медиатора, и наконец его количество становится достаточным для возникновения возбуждающего постсинаптического потенциала, а затем и потенциала действия. Кроме суммации во времени, в нервных центрах возможна пространственная суммация. Она характеризуется тем, что если раздражать одно афферентное волокно раздражителем допороговой силы, то ответной реакции не будет, а если раздражать несколько афферентных волокон раздражителем той же допороговой силы, то возникает рефлекс, так как импульсы, приходящие с нескольких афферентных волокон суммируются в нервном центре.

Возбуждающий постсинаптический потенциал . В синапсах, в которых осуществляется возбуждение постсинаптической структуры, обычно происходит повышение проницаемости для ионов натрия. По градиенту концентрации Na+ входят в клетку, что вызывает деполяризацию постсинаптической мембраны. Эта деполяризация получила название: возбуждающий постсинаптический потенциал – ВПСП. ВПСП относится к локальным ответам и, следовательно, обладает способностью к суммации. Выделяют временную и пространственную суммацию.

Роль в суммации ;

Принцип временной суммации - заключается в том, что импульсы поступают к пресинаптическому окончанию с периодом меньшим, чем период ВПСП.

Сущность пространственной суммации заключается в одновременной стимуляции постсинаптической мембраны синапсами, расположенными близко друг от друга. В этом случае ВПСП каждого синапса суммируются.

Если величина ВПСП достаточно велика и достигает критического уровня деполяризации (КУД), то генерируется ПД. Однако не все участки мембраны обладают одинаковой способностью к генерации ВПСП. Так, аксонный холмик, являющийся начальным сегментом аксона относительно сомы, имеет приблизительно в 3 раза более низкий порог электрического раздражения. Следовательно, синапсы, расположенные на аксональном холмике, обладают большей возможностью к генерации ПД, чем синапсы дендритов и сомы. От аксонального холмика ПД распространяется в аксон, а также ретроградно в сому.

ВОПРОС 28.Явление трансформации ритма возбуждений в нервных центрах и его механизмы. Роль ВПСП и кольцевых связей в ЦНС . (Прим; Такая же херня что и с предыдущим вопросом - I’m sorryL)

Лат. transformatio - преобразование, превращение - одно из свойств проведения возбуждения в центре, заключающееся в способности нейрона изменять ритм приходящих импульсов. Особенно четко проявляется трансформация ритма возбуждения при раздражении афферентного волокна одиночными импульсами. На такой импульс нейрон отвечает серией импульсов. Это обусловлено возникновением длительного возбуждающего постсинаптического потенциала (роль ВПСП ), на фоне которого развивается несколько ликов (спайков- пиковых потенциалов). Другой причиной возникновения множественного разряда импульсов являются следовые колебания мембранного потенциала. Когда его величина достаточно велика, следовые колебания могут привести к достижению критического уровня деполяризации мембраны и обусловливают появление вторичных спайков. В нервных центрах может происходить и трансформация силы импульсов: слабые импульсы усиливаются, а сильные ослабевают.

ВОПРОС 29. Посттетаническая потенциация в нервных центрах.(Тут мало – но это все что было в учебнике)

Это интегративный феномен. При раздражении афферентного нерва стимулами с низкой частотой можно получить рефлекс определенной интенсивности. Если затем этот нерв подвергать высокочастотному ритмическому раздражению, то повторное редкое ритмическое раздражение приведет к резкому усилению реакции.

ВОПРОС 30. Одностороннее проведение возбуждения в нервных центрах. Роль синаптических структур .

Одностороннее проведение возбуждения . В рефлекторной дуге, включающей н центры, процесс возбуждения распространяется в одном направлении (от входа по афферентным путям к центру, затем по эфферентным путям к эффектору).

Роль синаптических структур .

В отличие от нервных и мышечных волокон, для которых характерен закон двухстороннего проведения, в синапсе возбуждение распространяется только в одном направлении – от пресинаптической клетки к постсинаптической.

31.Высокая утомляемость нервных центров :

Утомление -ослабление рефлекторной реакции вплоть до ее полного исчезновения, происходящее под действием длительного повторного раздражения рецептивного поля рефлекса. Высокая утомляемость связана с деятельностью синапсов, в которых запасы медиатора истощаются,уменьшаются энергетические ресурсы. а также высокая утомляемость нервных центров происходит из-за адаптации постсинаптических рецепторов к медиаторам.

32.тонус нервных центров и его механизмы:

Тонус -наличие определённой фоновой активности нервного центра. То есть,в покое, в отсутствие внешних раздражителей определенное количество нервных клеток находится в состоянии постоянного возбуждения, генерирует фоновые импульсные потоки. например, во сне в высших отделах мозга остаётся некоторое количество фоновоактивных нервных клеток, определяющих тонус соответствующего нервного центра.

Определение понятия

Локальный потенциал (ЛП) - это местное нераспространяющееся подпороговое возбуждение, существующее в пределах от потенциала покоя (-70 мВ в среднем) до критического уровня деполяризации (-50 мВ в среднем). Его длительность может быть от нескольких миллисекунд до десятков минут.

В случае превышения критического уровня деполяризации локальный потенциал переходит в потенциал действия и порождает .

Критический уровень деполяризации (КУД) - это такой уровень электрического потенциала мембраны возбудимой клетки, от которого локальный потенциал переходит в потенциал действия. В основе перехода локального потенциала в потенщиал действия лежит самонарастающее открытие потенциал-управляемых ионных каналов для натрия, которое происходит под действием нарастающей деполяризации. Таким образом, КУД раскрывает в дополнение к ранее открытым ионным каналам ещё одну группу натриевых ионных каналов - потенциал управляемых.

КУД обычно составляет -50 мВ, но бывает разным у разных нейронов и может меняться при изменении возбудимости нейрона. Чем ближе КУД к потенциалу покоя (-70 мВ) и, наоборот, чем ближе потенциал покоя к КУД, тем более возбудимым является нейрон.

Важно понять то, что процесс рождения локального потенциала начинается с открытия ионных каналов . Открытие ионных каналов - это самое главное! Их нужно открыть для того, чтобы в клетку пошёл поток ионов и принёс в неё электрические заряды. Эти ионные электрические заряды как раз и вызывают смещение электрического потенциала мембраны вверх или вниз, т.е. локальный потенциал.

натрия (Na+) , то в клетку вместе с ионами натрия попадают положительные заряды, и её потенциал смещается вверх в сторону нуля. Это - деполяризация, и так рождается возбуждающий локальный потенциал . Можно сказать, что возбуждающие локальные потенциалы порождаются натриевыми ионными каналами, когда они открываются.

Образно можно сказать и так: "Каналы открываются - потенциал рождается".

Если открываются ионные каналы для хлора (Cl-) , то в клетку вместе с ионами хлора попадают отрицательные заряды, и её потенциал смещается вниз ниже потенциала покоя. Это гиперполяризация, и таким способом рождается тормозный локальный потенциал . Можно сказать, что тормозные локальные потенциалы порождаются хлорными ионными каналами .

Существует также ещё один механизм формирования тормозных локальных потенциалов - за счёт открытия дополнительных ионных каналов для калия (К+) . В этом случае из клетки через них начинают выходить "лишние" порции ионов калия, они выносят положительные заряды и увеличивают электроотрицательность клетки, т.е. вызывают её гиперполяризацию. Таким образом, можно сказать, что тормозные локальные потенциалы порождаются дополнительными калиевыми ионными каналами .

Как видите, всё очень просто, главное - открыть нужные ионные каналы . Стимул-управляемые ионные каналы открываются раздражителем (стимулом). Хемо-управляемые ионные каналы открываются медиатором (возбуждающим или тормозным). Точнее, в зависимости от того на какие каналы (натриевые, калиевые или хлорные) будет действовать медиатор, таков будет и локальный потенциал - возбуждающий или тормозный. А медиатор как для возбуждающих локальных потенциалов, так и для тормозных, может быть одним и тем же, тут важно, какие ионные каналы будут связываться с ним своими молекулярными рецепторами - натриевые, калиевые или хлорные.

Виды ЛП:

1. Рецепторный. Возникает на рецепторных клетках (сенсорных рецепторах) или рецепторных окончаниях нейронов под действием стимула (раздражителя). Механизм возникновения такого рецепторного локального потенциала детально рассмотрен на примере восприятия звука слуховыми рецепторами - Молекулярные механизмы рецепции (трансдукции) звука по пунктам Этот процесс называется "трансдукция", то есть преобразование раздражения в нервное возбуждение. Сенсорные рецепторы вторичного типа не умеют порождять нервный импульс, поэтому их возбуждение остаётся локальным и от его амплитуды зависит то, сколько рецепторная клетка выбросит медиатора.

2. Генераторный . Возникает на сенсорных афферентных нейронах (на их дендритных окончаниях, перехватах Ранвье и/или аксонных холмиках) под действием медиаторов, которые выделили сенсорные клеточные рецепторы вторичного типа. Генераторный потенциал превращается в потенциал действия и нервный импульс при достижении им критического уровня деполяризации, т.е. он генерирует (порождает) нервный импульс. Потому он и назван генераторным.

3. Возбуждающий постсинаптический потенциал (ВПСП) . Возникает на постсинаптической мембране синапса, т.е. он отражает передачу возбуждения от одного нейрона к другому. Обычно он составляет +4 мВ. Важно отметить, что возбуждение передаётся от одного нейрона другому именно в виде ВПСП, а не готового нервного импульса. ВПСП вызывает деполяризацию мембраны, но подпороговую, не достигающую КУД и не способную породить нервный импульс. Поэтому обычно требуется целая серия ВПСП для того, чтобы родился нервный импульс, т.к. величина единичного ВПСП совершенно недостаточна для того, чтобы достичь критического уровня деполяризации. Вы можете сами подсчитать, сколько требуется одновременно действующих ВПСП, чтобы родился нервный импульс. (Ответ: 5-6.)

4. Тормозный постсинаптический потенциал (ТПСП) . Возникает на постсинаптической мембране синапса, но только не возбуждает её, а, наоборот, тормозит. Соотвтетственно, эта постсинаптическая мембрана входит в состав тормозного синапса , а не возбуждающего. ТПСП вызывает гиперполяризацию мембраны, т.е. сдвигает потенциал покоя вниз, подальше от нуля. Обычно он составляет -0,2 мВ. Используются два механизма создания ТПСП: 1) "хлорный" - происходит открытие ионных каналов для хлора (Cl-), через них в клетку входят ионы хлора и увеличивают её электроотрицательность, 2) "калиевый" - происходит открытие ионных каналов для калия (К+), через них выходят ионы калия, уносят из клетки положительные заряды, что увеличивает электроотрицательность в клетке.

5. Пейсмекерные потенциалы - это эндогенные близкие к синусоидальным периодические колебания мембранного потенциала с частотой 0,1-10 Гц и амплитудой 5-10 мВ. Их генерируют у себя специальные нейроны-пейсмекеры (водителями ритма) самостоятельно, без внешнего воздействия. Пейсмекерные локальные потенциалы обеспечивают периодическое достижение нейроном-пейсмекером критического уровня деполяризации и спонтанную (т.е. самопроизвольную) генерацию им потенциалов действия и, соответственно, нервных импульсов.

Где возникают локальные потенциалы (ЛП)?

Ответ прост: на сенсорных рецепторах, на дендритных рецепторных окончаниях нейронов и на постсинаптических мембранах синапсов. Не надо забывать и аксонный холмик, где интегрируются локальные потенциалы и создают генераторный потенциал, порождающий нервны импульс. Там их и надо искать, чтобы привести примеры ЛП.

Места возникновения локальных потенциалов :

1. Сенсорные клеточные рецепторы (напримр, слуховые волосковые клетки, вкусовые рецепторы и т,д,).

2. Рецепторные окончания чувствительных (афферентных) нейронов (например, ноцицепторы болевых нейронов)..

3. Постсинаптические мембраны синаптических контактов.

4. Генераторный потенциал формируется на аксонном холмике.

Характеристики мембранных потенциалов

Показатели

Рецепторный потенциал

Постсинаптический потенциал (ВПСП или ТПСП)

Потенциал действия

Локализация (место расположения) Мембрана сенсорной рецепторной клетки или рецепторное окончание афферентного нейрона. Постсинаптическая мембрана синапса. Возникновение: аксонный холмик, перехват Ранвье, постсинаптическая мембрана синапса. Распространение: по всей мембране нейрона.
Механизм возникновения Открытие стимул-управляемых ионных каналов для натрия. Открытие медиатором хемоуправляемых ионных каналов для натрия (ВПСП) или для хлора либо калия (ТПСП). Открытие потенциал-управляемых ионных каналов для натрия.

Амплитуда

Длительность

5 мс - 20 мин

Амплитуда: время/пространство

Убывающий.

Убывающий.

Незатухающий.

Движение

Локальный.

Локальный.

Распространяющийся.

Функциональная зависимость: сила воздействия / амплитуда
Величина (амплитуда) зависит от силы раздражителя. Величина (амплитуда) зависит от количества воздействующего на постсинаптическую мембрану нейромедиатора. Амплитуда стандартна для данного нейрона и не зависит от силы раздражителя или от количества нейромедиатора.

Свойства локальных потенциалов

1. Локальный потенциал прямо пропорционален силе раздражителя , который его вызывает.

2. Локальные потенциалы ограничены во времени (долго не живут), величине (большими не растут) и пространстве (никуда не бегут).

3. Локальные потенциалы способны к суммации ., т.е. они объединяются и дают повышенную величину (амплитуду).

4. Амплитуда локального потенциала убывает прямо пропорционально квадрату расстояния. Это означает, что ЛП не охватывает всю мембрану нейрона, а ограничен тем участком, где он возник. Хотя, тем не менее, множество отдельных ЛП суммируются и совокупно воздействуют на аксонный холмик, создавая генераторный потенциал.

В возбуж­дающих синапсах нервной системы медиатором может являться ацетилхолин, норадреналин, дофамин, серотонин, глугаминовая кисло­та, вещество Р, а также большая группа других веществ, являющих­ся, если не медиаторами в прямом значении, то во всяком случае модуляторами (меняющими эффектиьность) синаптической передачи. Возбуждающие медиаторы вызывают появление на постсинаптичес­кой мембраневозбуждающего постсинаптического потенциала (ВПСП) . Его формирование обусловлено тем, что медиатор-рецепторный комплекс активирует Na- каналы мембраны (а также веро­ятно и Са-каналы) и вызывает за счет поступления натрия внутрь клетки деполяризацию мембраны. Одновременно происходит и уменьшение выхода из клетки ионовК + Амплитуда одиночного ВПСП однако довольно мала, и для уменьшения заряда мембраны до критического уровня деполяризации необходима одновременная активация нескольких возбуждающих синапсов.

ВПСП, образуемые на постсинаптической мембране этих синапсов, способны суммиро­ваться, т.е. усиливать друг друга, приводя к росту амплитуды ВПСП (пространственная суммация ).

Растет амплитуда ВПСП и при уве­личении частоты поступающих к синапсу нервных импульсов (вре­менная суммация ), что повышает число выводимых в синаптическую щель квантов медиатора.

Процесс спонтанной регенеративной деполяризации возникает в нейроне обычно в месте отхождения от тела клетки аксона, в так называемом аксонном холмике, где аксон еше не покрыт миелином и порог возбуждения наиболее низкий. Таким образом, ВПСП, возникающие в разных участках мембраны нейрона и на его дендритах, распространяются к аксонному холмику, где суммируются, деполяризуя мембрану до критического уровня и приводя к появ­лению потенциала действия.

Тормоз­ной постсинаптический потенциал (ТПСП) В тормозных синапсах обычно действуют другие, тормозные, ме­диаторы. Среди них хорошо изученными являются аминокислота глицин (тормозные синапсы спинного мозга), гамма-аминомасляная кислота (ГАМК) - тормозной медиатор в нейронах головного мозга. Вместе с тем, тормозной синапс может иметь тот же медиатор, что и возбуждающий, но иную природу рецепторов постсинаптической мембраны. Так, для ацетилхолина, биогенных аминов и аминокислот на постсинаптической мембране разных синапсов могут существо­вать как минимум два типа рецепторов, и, следовательно, разные медиатор-рецепторные комплексы способны вызывать различную реакцию хемочувствительныхрецепторуправляемых каналов. Для тор­мозного эффекта такой реакцией может являться активация кали­евых каналов, что вызывает увеличение выхода ионов калия наружу и гиперполяризацию мембраны. Аналогичный эффект во многих тормозных синапсах имеет активация каналов для хлора, увеличи­вающая его транспорт внутрь клетки. Возникающий при гиперполя­ризации сдвиг мембранного потенциала получил название тормоз­ного постсинаптического потенциала (ТПСП) . На рис.3.5 показаны отличительные черты ВПСП и ТПСП. Увеличение частоты нервных импульсов, приходящих к тормозному синапсу, также как и в воз­буждающих синапсах, вызывает нарастание числа квантов тормозно­го медиатора, выделяющихся в синаптическую щель, что, соответ­ственно, повышает амплитуду гиперполяризационного ТПСП. Вместе с тем, ТПСП не способен распространяться по мембране и суще­ствует только локально.


В результате ТПСП уровень мембранного потенциала удаляется от критического уровня деполяризации и возбуждение становится либо вообще невозможным, либо для возбуждения требуется суммация значительно больших по амплитуде ВПСП, т.е. наличие значительно больших возбуждающих токов. При одновременной активации возбуждаюших и тормозных синапсов резко падает амплитуда ВПСП, так как деполяризующий поток ионов Na + компенсируется одновре­менным выходом ионов К + в одних видах тормозных синапсов или входом ионов СГ в других, что называют шунтированием ВПСП .

Под влиянием некоторых ядов может происходить блокада тор­мозных синапсов в нервной системе, что вызывает безудержное возбуждение многочисленных рефлекторных аппаратов и проявляется в виде судорог. Так действует стрихнин, конкурентно связывающий рецепторы постсинаптической мембраны и не позволяющий им вза­имодействовать с тормозным медиатором. Столбнячный токсин, нарушающий процесс освобождения тормозного медиатора, также угнетает тормозные синапсы.

Принято различать два типа торможения в нервной системе: первичное и вторичное

Все особенности распространения возбуждения в ЦНС объясняются ее нейронным строением: наличием химических синапсов, многократным ветвлением аксонов нейронов, наличием замкнутых нейронных путей. Этими особенностями являются следующие.

1. Иррадиация (дивергенция) возбуждения в ЦНС. Она объясняется ветвлением аксонов нейронов, их способностью устанавливать многочисленные связи с другими нейронами, наличием вставочных нейронов, аксоны которых также ветвятся (рис. 4.4, а).

Иррадиацию возбуждения можно наблюдать в опыте на спинальной лягушке, когда слабое раздражение вызывает сгибание одной конечности, а сильное - энергичные движения всех конечностей и даже туловища. Дивергенция расширяет сферу действия каждого нейрона. Один нейрон, посылая импульсы в кору большого мозга, может участвовать в возбуждении до 5000 нейронов.

Рис. 4.4. Дивергенция афферентных дорсальных корешков на спинальные нейроны, аксоны которых, в свою очередь, ветвятся, образуя многочисленные коллатерали (в), и конвергенция эфферентных путей от различных отделов ЦНС на α-мотонейрон спинного мозга (6)

1. Конвергенция возбуждения (принцип общего конечного пути) - схождение возбуждения различного происхождения по нескольким путям к одному и тому же нейрону или нейронному пулу (принцип шеррингтоновской воронки). Конвергенция возбуждения объясняется наличием многих аксонных коллатералей, вставочных нейронов, а также тем, что афферентных путей в несколько раз больше, чем эфферентных нейронов. На одном нейроне ЦНС может располагаться до 10 000 синапсов. Явление конвергенции возбуждения в ЦНС имеет широкое распространение. Примером может служить конвергенция возбуждения на спинальноммотонейроне. Так, к одному и тому же спинальному мотонейрону подходят первичные афферентные волокна (рис. 4.4, б), а также различные нисходящие пути многих вышележащих центров ствола мозга и других отделов ЦНС. Явление конвергенции весьма важно: оно обеспечивает, например, участие одного мотонейрона в нескольких различных реакциях. Мотонейрон, иннервирующий мышцы глотки, участвует в рефлексах глотания, кашля, сосания, чиханья и дыхания, образуя общий конечный путь для многочисленных рефлекторных дуг. На рис. 4.4, я показаны два афферентных волокна, каждое из которых отдает коллатерали к 4 нейронам таким образом, что 3 нейрона из общего их числа, равного 5, образуют связи с обоими афферентными волокнами. На каждом из этих 3 нейронов конвергируют два афферентных волокна.

На один мотонейрон может конвергировать множество коллатералей аксонов, до 10 000-20 000, поэтому генерация ПД в каждый момент зависит от общей суммы возбуждающих и тормозящих синаптических влияний. ПД возникают лишь в том случае, если преобладают возбуждающие влияния. Конвергенция может облегчать процесс возникновения возбуждения на общих нейронах в результате пространственной суммации подпороговых ВПСП либо блокировать его вследствие преобладания тормозных влияний (см. раздел 4.8).

3. Циркуляция возбуждения по замкнутым нейронным цепям. Она может продолжаться минуты и даже часы (рис. 4.5).

Рис. 4.5. Циркуляция возбуждения в замкнутых нейронных цепях по Лоренто де-Но (а) и по И.С.Беритову (б). 1,2,3- возбуждающие нейроны

Циркуляция возбуждения - одна из причин явления последействия, которое будет рассмотрено далее (см. раздел 4.7). Считают, что циркуляция возбуждения в замкнутых нейронных цепях - наиболее вероятный механизм феномена кратковременной памяти (см. раздел 6.6). Циркуляция возбуждения возможна в цепи нейронов и в пределах одного нейрона в результате контактов разветвлений его аксона с собственными дендритами и телом.

4. Одностороннее распространение возбуждения в нейронных цепях, рефлекторных дугах. Распространение возбуждения от аксона одного нейрона к телу или дендритам другого нейрона, но не обратно объясняется свойствами химических синапсов, которые проводят возбуждение только в одном направлении (см. раздел 4.3.3).

5. Замедленное распространение возбуждения в ЦНС по сравнению с его распространением по нервному волокну объясняется наличием на путях распространения возбуждения множества химических синапсов. Время проведения возбуждения через синапс затрачивается на выделение медиатора в синаптическую щель, распространение его до постсинаптической мембраны, возникновение ВПСП и, наконец, ПД. Суммарная задержка передачи возбуждения в синапсе достигает примерно 2 мс. Чем больше синапсов в нейрональной цепочке, тем меньше общая скорость распространения по ней возбуждения. По латентному времени рефлекса, точнее по центральному времени рефлекса, можно ориентировочно рассчитать число нейронов той или иной рефлекторной дуги.

6. Распространение возбуждения в ЦНС легко блокируется определенными фармакологическими препаратами, что находит широкое применение в клинической практике. В физиологических условиях ограничения распространения возбуждения по ЦНС связаны с включением нейрофизиологических механизмов торможения нейронов.

Рассмотренные особенности распространения возбуждения дают возможность подойти к пониманию свойств нервных центров.

4. СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О ФОРМАХ И МЕХАНИЗМАХ ТОРМОЖЕНИЯ В ЦНС. ФУНУЦИОНАЛЬНОЕ ЗНАЧЕНИЕ РАЗЛИЧНЫХ ФОРМ ТОРМОЖЕНИЯ.

Торможение в ЦНС – это процесс ослабления или прекращения передачи нервных импульсов. Торможение ограничивает распространение возбуждения (иррадиацию) и позволяет производить тонкую регуляцию деятельности отдельных нейронов и пαередачи сигналов между ними. Чаще всего тормозными нейронами являются вставочные нейроны. Именно благодаря взаимодействию процессов возбуждения и торможения в ЦНС осуществляется объединение деятельности отдельных систем организма в единое целое (интеграция) и согласование, координация их деятельности. Например, концентрацию внимания можно рассматривать как ослабление иррадиации и усиление индукции. Процесс этот совершенствуется с возрастом. Значение торможения заключается также в том, что от всех органов чувств, от всех рецепторов в мозг непрерывно идет поток сигналов, однако мозг реагирует не на все, а только на наиболее значимые в данный момент. Торможение позволяет более точно скоординировать работу разных органов и систем организма. С помощью пресинаптического торможения ограничивается поступление отдельных видов нервных импульсов к нервным центрам. Постсинаптическое торможение ослабляет рефлекторные реакции, которые в данный момент являются ненужными или несущественными. Оно лежит, например, в основе координации работы мышц.

Различают первичное и вторичное торможение. Первичное торможение развивается первично, без предварительного возбуждения и проявляется в гиперполяризациинейрональной мембраны при действии тормозныхнейромедиаторов. Например, реципрокное торможение при действии тормозных нейромедиаторов.К первичному торможению относятся пресинаптическое и постсинаптическое торможение, ко вторичному – пессимальное и торможение вслед за возбуждением. Вторичное торможение возникает без участия специальных тормозных структур, как следствие избыточной активации возбуждающих нейронов (торможение Введенского). Оно играет охранительную роль. Вторичное торможение выражается в стойкой деполяризации нейрональных мембран, превышающей критический уровень и вызывающей инактивацию натриевых каналов. Центральное торможение (И.М.Сеченов) – это торможение, вызываемое возбуждением и проявляющееся в подавлении другого возбуждения.

Классификация торможения:

I. По локализации места приложения в синапсе:

1 – пресинаптическое торможение – наблюдается в аксо-аксональных синапсах, блокируя распространение возбуждения по аксону (в структурах мозгового ствола, в спинном мозге). В области контакта выделяется тормозной медиатор (ГАМК), вызывающий гиперполяризацию, что нарушает проведение волны возбуждения через этот участок.

2 – постсинаптическое торможение – основной вид торможения, развивается на постсинаптической мембране аксосоматических и аксодендрических синапсов под влиянием выделившихся ГАМК или глицина. Действие медиатора вызывает в постсинаптической мембране эффект гиперполяризации в виде ТПСП, что приводит к урежению или полному прекращению генерации ПД.

II. По эффектам в нейронных цепях и рефлекторных дугах:

1 – реципрокное торможение – осуществляется для координации активности мышц, противоположных по функции (Шеррингтон). Например, сигнал от мышечного веретена поступает с афферентного нейрона в спинной мозг, где переключается на α-мотонейрон сгибателя и одновременно на тормозной нейрон, который тормозит активность α-мотонейрона разгибателя.

2 – возвратное торможение – осуществляется для ограничения излишнего вобуждения нейрона. Например, α-мотонейрон посылает аксон к соответствующим мышечным волокнам. По пути от аксона отходит коллатераль, которая возвращается в ЦНС – она заканчивается на тормозном нейроне (клетка Реншоу) и активирует ее. Тормозной нейрон вызывает торможение α-мотонейрона, который запустил всю эту цепочку, то есть α-мотонейрон сам себя тормозит через систему тормозного нейрона.

3 – латеральное торможение (вариант возвратного). Пример: фоторецептор активирует биполярную клетку и одновременно рядом расположенный тормозной нейрон, блокирующий проведение возбуждения от соседнего фоторецептора к ганглиозной клетке («вытормаживание информации».

III. По химической природе нейромедиатора :

1 – ГАМКергическое,

2 – глицинергическое,

3 – смешанное.

IV. Классификация видов торможения по И.П.Павлову (таблица 1)

Таблица 1 – Виды торможения (по И.П.Павлову)

Тип торможения Вид торможения Характеристика Биологическое значение
Безусловное торможение Внешнее Отвлечение при действии неожиданных новых стимулов Смена доминанты, переключение на сбор новой информации
Запредельное Результат утомления «Охранительное», защита нервной системы от повреждения
Условное Угасательное Ослабление реакции при неподкреплении условного стимула Отказ от неэффективных поведенческих программ, забывание неиспользуемых программ
Дифференцировочное Прекращение реакции на сходный с условным, но неподкрепляемый стимул Тонкое различение близких по параметрам сенсорных сигналов
Условный тормоз При предъявлении стимула, сигнализирующего, что вслед за условным раздражителем подкрепления не будет «Запреты», остановка текущей деятельности при определенных условиях
Запаздывательное Во время паузы между условным сигналом и запаздывающим подкреплением «Ожидание»
Понравилась статья? Поделиться с друзьями: