Уравнение Клапейрона—Клаузиуса. Уравнение Клапейрона – Клаузиуса Частный случай уравнения клаузиуса клапейрона

ТЕРМОДИНАМИКА

ЧАСТЬ II

ФАЗОВЫЕ РАВНОВЕСИЯ.

ТЕРМИЧЕСКИЙ АНАЛИЗ

Учебно-методическое пособие

Березники 2011

Рецензент:

кандидат технических наук, доцент кафедры ХТиЭ Дыблин Б.С.

(Березниковский филиал Пермского государственного технического университета)

Колбасина, В.Д.

К60 Термодинамика. Часть II. Фазовые равновесия. Термический анализ: учебно-метод. пособие / В.Д. Колбасина. – Березниковский филиал Пермского государственного технического университета. – Березники, 2011. – 53 с.

Пособие полностью соответствует программам по физической химии для студентов инженерного факультета и предназначено для приобретения навыков самостоятельной работы при решении задач, а также для подготовки к лабораторному практикуму.

Пособие дает представление о фазовых составляющих термодинамических систем и сущности термического анализа, поясняет термины, используемые при их определении и основные принципы метода термического анализа термодинамических систем. В нем приводятся примеры решений примеров термодинамического равновесия и термического анализа, а также с построением диаграмм плавкости. Даются примеры оформления и выполнения расчетных работ.

Предназначено для студентов, изучающих курс «Физическая химия».

ISBN © ГОУ ВПО

«Пермский государственный

технический университет», 2011


1. Уравнение Клапейрона – Клаузиуса. 4

1.1. Плавление. 6

1.2. Испарение (сублимация) 9

2. Термодинамическое равновесие. Правило фаз Гиббса. 12

2.1. Диаграмма состояния воды в области средних давлений. 16

3. Двухкомпонентные системы.. 18

3.1. Системы с полной нерастворимостью компонентов в твердом состоянии 20

3.1.1. Неизоморфные двухкомпонентные системы с простой эвтектикой 20

3.1.2. Неизоморфные двухкомпонентные системы, образующие устойчивое химическое соединение. 29

3.1.3. Неизоморфныне двухкомпонентные системы, образующие два новых химических соединения. 31

3.1.4. Неизоморфные двухкомпонентные системы, образующие неустойчивое химическое соединение. 32

3.2. Изоморфные системы (системы с твердыми растворами) 36

4. Трехкомпонентные системы.. 43

5. Термический анализ. 47

5.1. Экспериментальная часть. 51

Библиографический список. 52


Уравнение Клапейрона – Клаузиуса

Процессы, заключающиеся в превращении одной фазы вещества в другую того же вещества, протекающие без химических реакций, называются фазовыми превращениями (плавление, возгонка, испарение, полиморфные превращения).

Когда система, состоящая из нескольких фаз, достигает равновесия, то переход молекул из одной фазы в другую не прекращается. Например, в равновесной системе вода – пар молекулы все время переходят из жидкости в пар и обратно. Для равновесия характерно равенство скоростей испарения и конденсации. Равновесие, таким образом, поддерживается двумя противоположными процессами, идущими с одинаковыми скоростями.

Фазовые равновесия, разумеется, могут устанавливаться и в других системах, например, в системах жидкость – твердое тело, или твердое тело –газ и др.

Состояние равновесия при постоянном Р и Т термодинамически характеризуется равенством энергий Гиббса одной и другой фазы: , т.е. изобарно-изотермические потенциалы чистого вещества в двух фазах находящихся в равновесии, при равенстве молекулярных весов равны между собой.

При изменении энергии Гиббса одной фазы для сохранения равновесия в системе меняется энергия Гиббса другой фазы на ту же величину, т.е.

Изменение изобарно-изотермического потенциала DG может происходить только за счет изменения Р и Т , т.к. G = ƒ (P , T ).

Эта зависимость выражается в общем виде уравнением

Следовательно, для двух смежных фаз, находящихся в равновесии запишем

так как (условие равновесия), то

разделим переменные

где S I и S II – энтропия 1-го моля вещества в первой и во второй фазах;

V I и V II – объем 1-го моля вещества в первой и во второй фазах;

– температурный коэффициент изменения давления насыщенного

– энтропия фазового перехода,

где ф.п. – энтальпия фазового перехода;

Т ф.п. – температура фазового перехода.

Тогда уравнение примет вид

. (1)

Эта зависимость была найдена Клапейроном еще до открытия первого закона термодинамики, а затем выведена Клаузиусом. Уравнение (1) называют уравнением Клапейрона – Клаузиуса в дифференциальной форме. Оно является общим термодинамическим уравнением, применимым ко всем фазовым переходам чистых веществ (однокомпонентных систем), т.е. к процессам плавления (равновесие твердое тело – жидкость), испарения (равновесие жидкость – пар), сублимации (равновесие твердое тело – пар), полиморфного превращения (равновесие их форм), а также и обратным им процессам.

Уравнение Клапейрона – Клаузиуса можно применить к любому количеству вещества, отнеся экстенсивные величины ( и DV ) к одинаковому его количеству. Обычно эти величины относят или к молю или к грамму.

Для того чтобы воспользоваться им для нахождения одной из зависимостей, надо знать три остальные. Например, чтобы найти зависимость давления насыщенного пара от температуры, надо знать зависимость теплоты фазового перехода ( ф.п) от температуры и зависимость мольных объемов равновесных фаз (V I V II ) от температуры.

Рассмотрим применимость уравнения Клапейрона – Клаузиуса к фазовым переходам (плавление, испарение, сублимация), представляющим наиболее общий интерес.

Плавление

Решение.

Определим изменение температуры плавления при повышении давления на 1 атм, т.е. .

Из уравнения Клапейрона – Клаузиуса

.

В соответствии с условием здесь:

Т ф.п – температура плавления под давлением 1 атм;

DV – разность объемов (удельных) жидкого и твердого олова;

ф.п.уд – удельная теплота плавления олова.

Для нашего случая

Т ф.п = 231,9 + 273 = 504,9К,

Тогда , .

В условии задачи дана молярная теплота плавления. Ее необходимо перевести в удельную теплоту плавления, так как М r (Sn) = 118,7 г/моль, то

.

Учитывая, что , то

.

После подстановки получаем:

Это значит, что при повышении давления на 1 атм температура плавления олова увеличится на 3,35∙10 -3 град.

Температура плавления олова под давлением 100 атм будет равна

Пример 2. Удельный объем (V ) льда при 0 0 С равен 1,091 см 3 /г, а воды 1 см 3 /г. Теплота плавления льда равна 34,292 Дж/г. Как изменится Т пл льда при изменении давления на 1 атм? При какой температуре плавится лед под давлением собственного насыщенного пара 4,6 мм.рт.ст?

Решение.

Надо определить

так как имеет размерность град/атм, а величина (V в – V льда) см 3 /г, то величина пл должна быть выражена в атм·см 3 /г. Учитывая, что , то получаем

Следовательно, если давление возрастает на 1 атм, температура плавления понижается на 0,073 0 С.

Если давление уменьшается с 1 атм до 4,6 мм.рт.ст (), то

– температура плавления повысится на 0,0726 0 С.

Пример 3. Под давлением 0,1013 МПа лед плавится при температуре 273К. Удельный объем льда при 273К равен 991,1∙10 -3 см 3 /г, а воды – 916,6∙10 -3 см 3 /г. Молярная теплота плавления льда равна 6010 Дж/моль. Вычислить давление, при котором лед будет плавиться при 271К.

Решение.

Воспользуемся уравнением Клапейрона – Клаузиуса:

где DV = V ж – V т = 916,6 ∙ 10 -3 – 991,1 ∙ 10 -3 = –74,5 ∙ 10 -3 см 3 /г – знак минус показывает, что при плавлении льда объем системы уменьшается;

пл – теплота плавления. В задаче дана молярная теплота плавления. Необходимо перевести в удельную теплоту плавления.

Мr (Н 2 О) = 18,01 г/моль, тогда

,

но для зависимости единицы измерения – , и 1Дж = 9,867см 3 ∙атм. Или 1 Дж = 9,867 ∙ 0,1013 см 3 МПа.

Тогда DН пл = 333,70 ∙ 9,867 ∙ 0,1013 .

Рассчитаем

Отрицательное значение зависимости показывает, что при увеличении давления () температура плавления льда понижается ().

Давление, при котором лед будет плавиться при 271К найдем из уравнения (3) .

Отсюда , но = (271–273) К = – 2К, а рассчитано ранее (), таким образом

Следовательно Р = Р 0 + = 0,1013 + 33,7 = 33,8 (МПа) – при давлении 33,8 МПа лед будет плавиться при 271К.

Испарение (сублимация)

При умеренных температурах и давлениях, ни слишком близких к критическим, объем кипящей жидкости мал по сравнению с объемом сухого насыщенного пара, поэтому изменение объема DV = V п – V ж в уравнении Клапейрона – Клаузиуса может быть заменено объемом V П – сухого насыщенного пара. Уравнение Клапейрона – Клаузиуса в этом случае примет вид

Если при умеренных давлениях к сухому насыщенному пару применимо уравнение состояния идеального газа PV = RT , заменим и тогда

,

разделим переменные

.

На основе рассуждений может быть получено уравнение Клапейрона –Клаузиуса для процесса сублимации, которое является приближенным. Преимущество его состоит в простоте, с которой оно может быть проинтегрировано

.

На диаграмме в координатах ln P – 1/T это уравнение выражается прямой линией с тангенсом угла наклона к оси 1/Т , равным – .

Это обстоятельство может быть использовано для нахождения примерного значения средней молярной теплоты парообразования (сублимации) в определенном интервале температур.

Интегрирование приближенного уравнения Клапейрона – Клаузиуса в предположении, что не зависит от Т в пределах Р 1 Р 2 дает

Это уравнение приемлемо для использования в небольшом интервале температур.

Пример 1. Нормальная температура кипения йода 185 0 С. Теплота парообразования исп.уд = 164,013 Дж/г. До какой примерно температуры следует нагреть йод в аппарате, в котором поддерживается давление , чтобы обеспечить перегонку?

Решение.

Воспользуемся уравнением Клапейрона – Клаузиуса

. (4)

В уравнении дана молярная теплота испарения ( исп), а в условии задачи удельная теплота парообразования, но

Переведем t 0 C в Т К. Т = 185 0 С + 273 = 458К.

Подставим имеющиеся данные в уравнение (4) и решим относительно Т 2 .

,

;

t 0 С = 386,4 – 273 = 113,4 0 С.

Вывод. При давлении равном 100 мм.рт.ст йод закипит при температуре 113,4 0 С.

Пример 2. При атмосферном давлении диэтиламин кипит при 58 0 С. Под каким давлением будет кипеть диэтиламин при 20 0 С, если нормальная теплота парообразования 27844,52 Дж/моль?

Решение.

Воспользуемся уравнением Клапейрона – Клаузиуса

. (4)

Переведем t 0 C в Т К.

Т 1 = 273 + 58 = 331К.

Т 2 = 273 + 20 = 293К.

Подставим данные в уравнение (4) и решим относительно Р 2 .

,

Вывод. При давлении равном 208,5 мм.рт.ст. диэтиламин будет кипеть при 20 0 С.

Пример 3. Давление паров кристаллического ацетилена при 132К равно 1,7 мм.рт.ст, а при 153К – 27,6 мм.рт.ст. Рассчитать мольную теплоту плавления ацетилена, если удельная теплота парообразования его составляет 828,014 Дж/г.

Решение.

По условию ацетилен из твердого состояния переходит в парообразное, т.е. ф.п = DН пл + DН исп. Воспользуемся уравнением (4) Клапейрона –Клаузиуса:

и решим относительно ф.п,

.

Подставим данные,

.

Тогда пл = DН ф.п – DН исп

В задаче дана удельная теплота испарения. Ее необходимо перевести в мольную теплоту испарения, так как Мr (С 2 Н 2) = 26 г/моль

пл = 22281,44 – 21528,364 = 753,056 .

Вывод. Молярная теплота плавления ацетилена равна 753,056 .

Двухкомпонентные системы

Изучение взаимодействия веществ в многокомпонентных системах без выделения образующихся продуктов проводится методом физико-химического анализа , сущность которого заключается в исследовании зависимости между численными значениями физических свойств равновесной химической системы и концентрациями компонентов, определяющих состояние равновесия.

На основании изучения физических свойств равновесной системы строятся диаграммы в координатах состав – свойство. По геометрическим особенностям диаграмм, по совокупности линий, поверхностей и т.д. можно наглядно судить не только о химической природе образующихся веществ, но и о числе, границах устойчивости, условиях совместного существования разных фаз в системе.

Основы этого метода заложены Д.И. Менделеевым, Ле-Шателье, Г. Тамманом, всесторонне развиты Н.С. Курнаковым, и нашли широкое применение в производстве стали, других сплавов, в галургии и производстве силикатных материалов.

Рассмотрим двухкомпонентные конденсированные системы, где присутствуют жидкие и твердые фазы.

Правило фаз Гиббса выразится в этом случае формулой:

но в таких системах обычно давление остается постоянным (Р = const) поэтому число свободных переменных становится равным 1 и тогда

т.е. такую диаграмму состояния можно построить на плоскости, выразив зависимость состав – температура.

Такие диаграммы получают методом термического анализа. Сущность этого метода состоит в том, что расплавленную смесь двух веществ охлаждают, измеряя через равные промежутки времени температуру и в координатах время – температура строят кривую охлаждения, используя тот факт, что пока в охлажденной системе не происходит никаких изменений (превращений), температура падает практически с постоянной скоростью. Процессы, сопровождающиеся выделением теплоты (кристаллизация, химические реакции, полиморфные превращения и т.д.), отражаются на кривой охлаждения или изломом (участок с замедленной скоростью охлаждения) или горизонтальными участками с постоянной температурой, что изображено на рис. 2.

Рис. 2. Типы кривых охлаждения:

а – чистое вещество;

б – смесь изоморфных веществ;

в – смесь неизоморфных веществ

Характерные точки на кривых охлаждения:

§ Кривая а: t кр – температура кристаллизации чистого вещества. Длительность температурной остановки и тем самым размер горизонтального участка на кривой охлаждения зависят от количества вещества и от скорости отвода тепла. При исчезновении последней капли жидкости температура начинает понижаться.

§ Кривая б: t 1 – температура начала кристаллизации изоморфной системы, t 2 – температура конца кристаллизации изоморфной системы.

§ Кривая в: t 1 – температура начала кристаллизации одного компонента неизоморфной системы, t 2 –t 3 – температура начала и конца кристаллизации эвтектической смеси. При охлаждении расплава двухкомпонентной системы отвердевание начинается с кристаллизации того из компонентов, относительно которого жидкий расплав становится насыщенным. На кривых охлаждения б и в, показано, что в точке t 1 начало кристаллизации одного из компонентов приводит к излому кривой и к понижению скорости охлаждения, вследствие выделения теплоты кристаллизации. Отсутствие температурной остановки объясняется тем, что состав жидкой фазы при кристаллизации меняется. При достижении температуры, при которой жидкий раствор становится насыщенным относительно и второго компонента, происходит одновременная кристаллизация обоих компонентов, на кривой охлаждения появляется еще один излом (t 2 ). При этом состав жидкой фазы остается постоянным. Поэтому на кривой охлаждения наблюдается температурная остановка (t 2 t 3 ). После отвердевания всей смеси (t 3 ) температура снова понижается.

Следовательно, всякий излом на кривой охлаждения указывает на начало некоторого превращения.

Чтобы получить диаграмму состояния, вначале экспериментально получают кривые охлаждения для ряда смесей с различной известной концентрацией компонентов А и В и на их основе уже строят диаграмму состояния системы А В . Для этого на координатную сетку состав –температура наносят все температурные остановки и точки излома на кривых охлаждения, а потом соединяют полученные точки.

Рассмотрим основные диаграммы равновесных двухкомпонентных конденсированных систем.

Решение.

Дана общая масса системы (10 кг), следовательно, . Согласно правилу рычага замеряем отрезки N II O и Т 3 N II и получаем решаем уравнение 33 m т = 130 Þ m т = 3,94 кг.

Вывод: при охлаждении 10 кг смеси состава n до температуры Т 3 выделится 3,94 кг кристаллов А .

В точке N III начинают выпадать первые кристаллы вещества В , следовательно, в системе находятся 3 фазы: одна жидкая (расплав состава n Е ) и две твердые (кристаллы А и кристаллы В ), т.е. , тогда , система безвариантна. Значение показывает, что эти три фазы могут находиться в равновесии только при вполне определенных условиях, когда температура равна эвтектической температуре (Т Е ), а раствор имеет эвтектический состав (n Е ). Ни температуру, ни состав невозможно в этом случае изменить, не изменив число и вид фаз. Согласно закону фазового равновесия Гиббса, кристаллизация эвтектики из раствора должна происходить при постоянной температуре, кроме того, соотношение масс кристаллов А и В в выпавшей эвтектике должно быть таким же, как и массовое содержание веществ А и В в расплаве эвтектического состава.

В связи с тем, что кристаллы А и В при кристаллизации эвтектики выпадают одновременно и у них нет условий для роста кристаллов, твердая эвтектика имеет мелкокристаллическую структуру . Застывший расплав состава N III (ниже температуры Т Е ) состоит из сравнительно крупных кристаллов А , которые выпали в интервале температур между точками N I и N III и мелкокристаллической смеси кристаллов А и В твердой эвтектической смеси.

Процесс кристаллизации заканчивается в фигуративной точке N III при температуре Т Е полным застыванием жидкого раствора (расплава).

После исчезновения жидкой фазы в системе остаются только две фазы: кристаллы А и кристаллы В . Это значит, что произвольно может меняться только температура.

В точке N IV продолжается охлаждение двух твердых фаз.

Кривая охлаждения для рассмотренного случая будет выглядеть так (см. рис. 3 - III).

Участок N – N I : , , охлаждение идет равномерно по закону Ньютона.

Участок N I -N II : в т. N I наблюдается излом, что говорит о появлении новой фазы – начинает кристаллизоваться вещество А . Кривая охлаждения опускается более полого, чем на участке N – N I . Это объясняется тем, что при кристаллизации вещества А из расплава выделяется теплота, которая замедляет педение температуры, следовательно, , .

При дальнейшем охлаждении температура понижается до эвтектической температуры Т Е , система достигает фигуративной точки N III , при этом состав жидкой фазы в точке Е становится эвтектическим и начинается выпадение твердой эвтектики, т.е. смеси кристаллов А и В . (кр А + кр В + Ж), следовательно . N III – начало кристаллизации эвтектики, N IV – конец кристаллизации эвтектики.

Треугольник Таммана

Если рассматривать кривые охлаждения смесей двухкомпонентной неизоморфной системы 2, 3, 4, 6 (см. рис. 3 – I), то можно отметить, что каждая из них имеет два излома.

Первый излом указывает на появление новой фазы – это начало кристаллизации чистого компонента (для кривых охлаждения 2, 3, 4 – это начало выделения кристаллов А , для кривой охлаждения 6 – это начало выделения кристаллов В ).

Второй излом, переходящий в горизонтальный отрезок, характеризует начало кристаллизации эвтектики.

На кривых охлаждения размеры этих отрезков (а, б, в, г, д) различны. Они прямо пропорционально зависят от количества выпавшей эвтектики. В нашем примере самый большой отрезок г (ЕМ ) находится на кривой охлаждения 5 (состав: 30% А и 70% В ), которая имеет всего один излом, переходящий в горизонтальную площадку. Это говорит о том, что мы имеем дело изначально с эвтектической смесью, чем объясняется большой размер г.

Если на диаграмме отложить отрезки (а, б, в, г, д) от линии солидуса и соединить полученные точки между собой, то образуется треугольник Т Е FM – треугольник Таммана, он позволяет рассчитать массу эвтектической смеси, которая выпадает при охлаждении системы любого состава АВ .

Пример. Пусть изначально взято 5 кг смеси состава 70% А и 30% В . Определить сколько эвтектики выделится при охлаждении данной смеси.

Решение.

Рассмотрим два треугольника. Треугольник Т Е N III N IV подобен треугольнику Т Е ЕМ , из чего вытекает

,

где ЕМ – 5кг, а отрезки Т Е Е и Т Е N III замеряем.

.

Вывод: при охлаждении 5 кг смеси состава 70% А и 30% В выделиться 2,22 кг эвтектической смеси.

Задача. На основании кривых охлаждения системы алюминий – кремний (рис. 4) построить диаграмму состав – температура плавления. По диаграмме определить:

1. При какой температуре начнется кристаллизация системы, содержащей 60% кремния?

2. Какой элемент будет переходить в твердое состояние?

3. Какое количество твердой фазы будет образовано при охлаждении до 1000К 2 кг системы, содержащей 60% кремния?

4. При какой температуре кристаллизация закончится?

5. Определить состав последней капли жидкости.

6. Найти массу эвтектики при охлаждении 2 кг смеси, содержащей 60% кремния.

Решение.

На основании кривых охлаждения строим диаграмму состав – температура. При кристаллизации чистого кремния (кривая охлаждения 1) наблюдается температурная остановка при 1693К (температура плавления кремния). Эту температуру откладываем на оси температур, отвечающей чистому кремнию (L ).

На кривой 2, содержащей 80% кремния, при 1593К обнаруживается уменьшение скорости охлаждения. При этом начинает выпадать чистый кремний в виде кристаллов, а жидкая фаза обогащается алюминием. При увеличении содержания алюминия, температура плавления системы уменьшается. При 845К на кривой 2 наблюдается температурная остановка (горизонтальная площадка - а), после чего вся система переходит в твердое состояние. При этом одновременно выпадают в виде кристаллов и алюминий, и кремний, т.е. кристаллизуется эвтектика. Оба вида кристаллов хорошо различимы под микроскопом.

При охлаждении системы, содержащей 40% кремния (кривая 4) изменение скорости охлаждения наблюдается уже при 1219К, а горизонтальная площадка (в) наблюдается при той же температуре, что и на кривой 2 (845К), что указывает на кристаллизацию эвтектики, а так как состав эвтектики постоянен, то длина горизонтальной площадки пропорциональна количеству кристаллизующейся эвтектики.

При охлаждении системы, содержащей 10% кремния (кривая охлаждения 5) наблюдается температурная остановка при 845К. Длина горизонтальной площадки (г) максимальна на кривой 5, что означает, что система, содержащая 10% кремния, соответствует эвтектическому составу.

При охлаждении чистого алюминия (кривая 7) наблюдается температурная остановка при 932К, что соответствует температуре плавления чистого алюминия.

Закончив построение диаграммы по всем кривым охлаждения, получим две кривые ликвидуса (NE , EL ) и горизонтальную прямую солидуса СЕМ , которые пересекаются в одной, так называемой эвтектической точке Е .

Выше кривых NEL (зона I) система находится в жидком состоянии.


Рис.4. Диаграмма состояния алюминий - кремний


В зоне II сосуществуют кристаллы алюминия и расплав, состав которого при каждой температуре определяется по кривой NE .

В зоне III сосуществуют кристаллы кремния и расплав, состав которого определяется по кривой ЕL .

В зоне IV система находится в твердом состоянии. Так как длина горизонтальной площадки, соответствующая кристаллизации эвтектики, пропорциональна количеству эвтектики, то это можно использовать для определения массы эвтектики, которая может быть выделена из смеси любого состава. Для этого необходимо построить треугольник Таммана.

Длины горизонтальных площадок (а, б, в, г, д) откладывают вертикально вниз от СЕМ в точках, отвечающих составам смесей. Соединив нижние концы и точки С и М , получаем треугольник Таммана.

1. Кристаллизация смеси, содержащей 60% кремния, начнется при температуре 1421К.

2. В твердую фазу будет переходить кремний. Расплав будет обогащаться алюминием.

3. При охлаждении системы, содержащей 60% кремния до 1000К, некоторое количество кремния выделится в виде кристаллов. Для определения количества твердой и жидкой фаз применяется правило рычага.

Вес кристаллов кремния так относится к весу жидкой фазы, как отрезок OF относится к отрезку FP . Если вес системы 2 кг, то

m т + m ж = 2 кг,

m ж = 2 – m т.

решаем уравнение относительно m т:

34 m т + 28 m т = 56,

m т = 0,903 кг.

При Т = 1000К из системы, содержащей 60% кремния, выделится кристаллического кремния.

4. Кристаллизация этой смеси закончится при температуре 845К – температуре эвтектики.

5. Состав последней капли жидкости соответствует составу эвтектики (10% кремния и 90% алюминия).

6. Массу эвтектики определяем из треугольника Таммана. Треугольник MKD подобен треугольнику MES , следовательно:

по условию m системы = 2 кг => ES = 2, все отрезки замеряем,

При охлаждении 2 кг смеси, содержащей 60% кремния, выделится 0,923 кг эвтектики.

Решение.

На основании кривых охлаждения строим диаграмму плавкости (рис. 9).

Кривая 1 соответствует охлаждению чистого золота. При Т = 1336К на кривой наблюдается температурная остановка. Она соответствует температуре плавления золота. Чистые вещества кристаллизуются при постоянной температуре, пока жидкая фаза не превратится в твердую. На оси ординат откладываем точку (1336), соответствующую температуре плавления золота.

Кривая 2 соответствует охлаждению системы, состоящей из 20% Pt и 80% Au. При Т = 1567К на кривой охлаждения наблюдается некоторый излом (скорость охлаждения уменьшается). Это объясняется выделением теплоты при кристаллизации смеси. При Т = 1405К заканчивается кристаллизация. Тепло больше не выделяется, поэтому некоторый излом на кривой 2 при этой температуре говорит о некотором увеличении скорости охлаждения (просто идет охлаждение полученной твердой системы).


Рис. 9. Диаграмма состояния изоморфной системы золото – платина


На оси ординат, соответствующей составу 20% Pt и 80% Au, откладываем Т = 1567К (температуру начала кристаллизации) и Т = 1405К (температуру конца кристаллизации). Аналогично находим точки, отвечающие другим составам. Соединив эти точки, получим две кривые АkСВ – линия ликвидуса и AmdB – линия солидуса, сходящиеся в точках плавления чистых веществ, которые представляют диаграмму изоморфной двухкомпонентной системы.

Выше линии ликвидуса вся система находится в жидком состоянии ( , ), ниже солидуса – в твердом состоянии ( , ). Между кривыми АkСВ и AmdB часть системы находится в жидком состоянии, а часть перешла в твердое состояние ( , ) – область равновесного сосуществования жидких и твердых растворов. Количество веществ, находящихся и жидком и твердом состоянии, определяется по правилу рычага.

1. Кристаллизация системы, содержащей 75% Pt и 25% Au (С" ), начнется при Т = 1925К.

2. Кристаллизация закончится, когда состав твердой фазы будет равен составу исходной жидкой фазы, т.е при 1688К (С"" ).

3. Состав первого кристалла определяется по точке пересечения изотермы начала кристаллизации с линией солидуса (d ), которой соответствует состав d" .

4. Система, содержащая 40% Pt и 60% Au, при охлаждении до 1650К гетерогенна – состоит из жидкой фазы состава k" и кристаллов состава m" . Массу кристаллов и жидкой фазы определяем по правилу рычага: вес твердой фазы относится к весу жидкой фазы как плечо kl относится к плечу lm , т.е.

Общий вес смеси 1,5 кг, и если принять, что

1) число степеней свободы системы в точках а , b , с , d ;

2) указать в каких пределах изменяется состав жидкого и твердого растворов при затвердевании 60%-ного сплава;

ТЕПЛОВЫЕ ЭФФЕКТЫ ФАЗОВЫХ ПЕРЕХОДОВ.

УРАВНЕНИЕ КЛАПЕЙРОНА – КЛАУЗИУСА.

Переход компонента из одной фазы в другую сопровождается выделением или поглощением теплоты, которую можно определить количественно на основе фундаментального уравнения термодинамики:

ВЫВОД И АНАЛИЗ УРАВНЕНИЯ КЛАПЕЙРОНА – КЛАУЗИУСА.

Для любого равновесного перехода вещества из одной фазы α в другую фазу β, применяя уравнение (* ) к каждой из фаз, можно написать

Индексы α и β отражают принадлежность параметров к соответствующей фазе. В равновесных условиях между фазами α и β изменение энергии Гиббса отсутствует, т.е.

Приравнивая правые части уравнений 1 и 2, получим

Для равновесного обратимого процесса согласно уравнениям и запишем

а уравнение (3) примет вид

где ∆H пер – теплота фазового перехода.

Тепловой эффект, сопровождающий фазовый переход, определяется следующим образом:

уравнение

Клапейрона–Клаузиуса

где ∆V – изменение объема в результате фазового перехода; dP/dT – изменение давления в зависимости от температуры при сохранении равновесия между двумя фазами.

Уравнение Клапейрона–Клаузиуса связывает тепловой эффект процесса с изменением давления насыщенного пара, температурой и изменением объема в процессе фазового перехода.

Для процессов испарения ж→п и сублимации тв→п уравнение Клапейрона–Клаузиуса можно представить следующим образом:

где ∆H исп, ∆H суб – теплоты испарения и сублимации; V п, V ж, V тв – мольные объемы пара, жидкости и твердого тела соответственно.

В процессе испарения и сублимации наблюдается значительное изменение удельного объема ∆V и существенное изменение величины dP/dT. При плавлении, напротив, изменение ∆V невелико, и величина dP/dT незначительна.

Пример 1. Проведем расчет по уравнению Клапейрона–Клаузиуса температуры плавления фенола Т пл. Плотность твердого фенола ρ тв при атмосферном давлении составляет 1,072∙10 3 кг/м 3 , а жидкого ρ ж = 1,056∙10 3 кг/м 3 ; теплота плавления ∆H пл = 1,045∙10 5 Дж/кг; температура замерзания 314,2 К. Определим dP/dT и температуру плавления при Р = 5,065∙10 7 Па:

Прирост температуры плавления при повышении давления на 1 атм (1,013∙10 5 Па) составляет 4,525∙10 -8 град/Па. При увеличении давления до 5,065∙10 7 Па температура плавления увеличивается на ∆T = (dT/dP)∆P = 4,525∙10 -8 ∙ 5,065∙10 7 = 2,29 К, т.е. составит Т пл = 314,2+2,29 = 316,49 К.

Следует иметь в виду, что в процессе плавления у большинства веществ V ж > V тв, тогда ∆V>0 и при повышении давления Р температура плавления повышается Т.

Однако, такие вещества как вода (Н 2 О), висмут (Bi), имеют объем твердой фазы V тв больше, чем объем жидкой фазы V ж < V тв. Тогда в процессе плавления этих веществ изменение мольного объема ∆V будет <0 и при повышении давления Р температура плавления будет уменьшаться Т↓

ПРИМЕР 2. Скольжение коньков по льду обусловлено образованием в плоскости скольжения воды, которая выполняет роль жидкой смазки. Ранее считали, что образование воды происходит за счет плавления льда под давлением острого конька. Однако термодинамические расчеты по уравнению Клапейрона–Клаузиуса не подтверждают этого. Действительно, удельный объем воды (ж) и льда (тв) равны соответственно V ж уд = 10 -3 м 3 /кг и V тв уд = 1,091·10 -3 м 3 /кг; теплота плавления ∆H пл = 332,4 кДж/кг:

Решение:

Это значение показывает, что для понижения температуры таяния льда на один градус Кельвина необходимо увеличить давление на 1,34∙10 7 Па, т.е. примерно на 134 атмосферы, что нереально, поскольку такое давление лед не выдерживает – трескается.

Таяние льда происходит в основном в результате трения и превращения работы в теплоту при скольжении конька по льду, а не за счет повышения давления на лед.

Уравнение для процесса испарения можно представить в интегральном виде. Мольный объем пара значительно превосходит мольный объем жидкости, V п >> V ж, т.е. величиной V ж можно пренебречь. Тогда уравнение Клапейрона–Клаузиуса запишется в виде:

Пар подчиняется законам идеального газа: PV=RT , тогда , преобразуем уравнение, переставляя давление Р в левую часть уравнения, а dT в правую часть. Получаем:

или

Проведем интегрирование уравнения (1) в пределах от Т 1 до Т 2 и соответственно от Р 1 до Р 2 при условии, что в области невысоких давлений пара ∆Н исп ≈ const; в результате интегрирования получим:

∆Н исп / R = const, выносим за знак интеграла

При помощи уравнения (2) можно графически определить значения теплоты испарения, если известны давления Р 1 и Р 2 и соответствующие им температуры испарения Т 1 и Т 2 . Для этого необходимо отложить на оси абсцисс значения обратной температуры, а на оси ординат – lnP.

Зависимость lnP от 1/Т будет линейной, а тангенс угла наклона этой прямой равен , т.е. , а

Расчетные значения ∆Н исп получаются с достаточной для практики точностью, не уступающей точности непосредственного измерения. Возможно использование уравнения (2) для обратного расчета, когда по значению ∆Н исп определяют изменение давления при изменении температуры в процессе испарения.

Теплоту фазовых переходов можно определить и по величине стандартной энтальпии образования, в зависимости от фазового состояния продуктов реакции.

Пример. Лучше всего это показать на примере теплоты образования воды из газообразных кислорода и водорода, которая составляет

H 2(г) +1/2О 2(г) =Н 2 О (г),(ж),(тв)

для водяного пара ∆Н (г) 0 = -241,82 кДж/моль; для воды в жидком состоянии ∆Н (ж) 0 = -285,83 кДж/моль; для льда ∆Н (тв) 0 = -291,82 кДж/моль. Теплота конденсации воды равна:

а теплота превращения воды в лед:

Как видно, тепловой эффект фазовых переходов значительно меньше теплоты образования веществ.

В результате фазовых переходов происходит изменение энтропии . Такие изменения в зависимости от температуры представим на рисунке.

Как известно, энтропия идеального кристалла при абсолютном нуле равна нулю. С ростом температуры атомы (ионы) флуктуировать относительно равновесного положения, число возможных способов их размещения растет, и энтропия увеличивается (ΔS>0). При достижении температуры плавления (точка А на рисунке) кристаллическая решетка разрушается скачкообразно (отрезок АБ), увеличивается термодинамическая вероятность системы W, а в соответствии с формулой S=k∙lnW (где k – постоянная Больцмана) энтропия при переходе от твердого в жидкое состояние растет. Более значительный скачок энтропии имеет место при переходе из жидкого состояния в газообразное (отрезок ВГ), когда ближний порядок расположения частиц друг относительно друга нарушается, и движение частиц становится хаотичным.

Пример. Оценим скачок энтропии на примере фазовых переходов воды:

,

когда известны стандартные абсолютные значения энтропии S тв 0 =39,4; S ж 0 =69,9; S г 0 =188,7 Дж/(моль·К).

Тогда имеем

В соответствии с рисунком для воды

По известной энтальпии фазового перехода можно рассчитать изменение энтропии в соответствии с формулой

Пример. Вычислим изменение энтропии в процессе парообразования 1 моля этилхлорида при 12,3 0 С, когда теплота испарения ∆Н исп =24,16 кДж/моль.

Молекулярная масса = 64,5 г/моль.

В заключение отмечу, что мы рассматривали лишь фазовые переходы I рода. При фазовых переходах I рода свойства веществ, выражаемые, например, через химический потенциал, первыми производными одной из характеристических функций, изменяются скачком при непрерывном изменении соответствующих параметров: температуры, давления, объема и энтропии. При этом выделяется или поглощается теплота перехода ∆Н пер в соответствии с уравнением Клапейрона–Клаузиуса.

Кроме них, однако, существуют фазовые переходы II рода. Они не сопровождаются выделением или поглощением теплоты, для них уравнение Клапейрона–Клаузиуса теряет смысл. Эти переходы характеризуют изменения в системе, которые не определяются объемом и запасом энергии. В этом случае первые производные одной из характеристических функций непрерывны, а вторые производные (например, теплоемкость) изменяются скачком. К фазовым переходам II рода относятся переходы парамагнетика в ферромагнетик, диэлектрика в сегнетоэлектрик, а также процессы возникновения сверхтекучести, сверхпроводимости и др.

§ 3. Фазовые переходы. Уравнение Клапейрона-Клаузиуса

В системе, состоящей из нескольких фаз чистого вещества, находящихся в равновесии, возможны переходы вещества из одной фазы в другую. Такие переходы называются фазовыми переходами или превращениями агрегатных состояний.

Рассмотрим равновесный переход одного моля вещества из одной фазы (1) в другую (2), совершающийся при постоянных давлении и температуре. Энергии Гиббса (G 1 и G 2) моля вещества в фазах 1 и 2 равны (условие равновесия). Следовательно:

G 2 = G 1 (III, 14)

Напишем уравнения (III, 13б) полных дифференциалов для энергии Гиббса одного моля чистого вещества в двух равновесных фазах 1 и 2:

dG 1 = V 1 dP – S 1 dT

dG 2 = V 2 dP – S 2 dT (III, 15)

Вычитая верхнее уравнение из нижнего, получим:

dG 2 – dG 1 = (V 2 – V 1) dP – (S 2 – S 1) dT

Изменения P и Т здесь были не независимыми, а такими, при которых сохранялось равновесие между фазами 1 и 2. Таким образом, между P и Т сохранялась функциональная связь, соответствующая фазовому равновесию. Поэтому, если G 1 = G 2 (равновесие при давлении P и температуре Т ), то G 1 + dG 1 = G 2 + dG 2 (равновесие при давлении P + dP и температуре T + dT ), т. е. dG l = dG 2 или dG 2 dG 1 = 0. Следовательно

(V 2 V 1)dP (S 2 S 1)dT = 0

Взаимное превращение, фаз рассматривалось здесь как равновесное и изотермическое, поэтому:

S 2 – S 1 = S =
=
=
(III, 17)

Здесь
– теплота фазового превращения, поглощаемая при переходе моля вещества из фазы 1 в фазу 2; V 2 – V 1 – разность мольных объёмов двух фаз.

Из уравнений (III, 16) и (III, 17) получим:

(III, 18)

Уравнение (III, 18) называется уравнением Клапейрона - Клаузиуса и является общим термодинамическим уравнением, приложимым ко всем фазовым переходам чистых веществ, т.е. к превращениям агрегатных состояний.

При превращении одной фазы в другую такие свойства как удельный или мольный объём, внутренняя энергия и энтропия одного грамма или одного моля вещества изменяются скачкообразно. Однако отсюда не следует, что внутренняя энергия всей двухфазной системы не является в этом случае непрерывной функцией её состояния. В самом деле, система, состоявшая в начале процесса, например, из некоторого количества льда при 0°С и 1 атм, при постоянном давлении и подведении теплоты превращается в двухфазную систему лед-жидкая вода, в которой по мере поглощения теплоты масса льда постепенно и непрерывно убывает, а масса воды растет. Поэтому также постепенно и непрерывно изменяются такие свойства системы в целом как внутренняя энергия, энтальпия, энтропия и др.

§ 4. Фазовые переходы первого рода. Плавление. Испарение

Фазовые переходы, характеризующиеся равенством изобарных потенциалов двух сосуществующих в равновесии фаз и скачкообразным изменением энтропии и объема при переходе вещества из одной фазы в другую, – называются фазовыми переходами первого рода. К ним относятся агрегатные превращения – плавление, испарение, возгонка и др.

Из фазовых переходов первого рода рассмотрим плавление и испарение, представляющие более общий интерес, чем другие процессы.

Плавление. Теплота плавления – перехода твердой фазы в жидкую – всегда положительна. Объём (мольный, удельный) жидкой фазы (V ж = V 2) в общем случае может быть больше или меньше объёма того же количества твердой фазы (V т = V 1). Отсюда в соответствии с уравнением (III, 18) вытекает, что величина dP / dT или обратная ей величина dT / dP , характеризующая изменение температуры с увеличением давления, может быть положительной или отрицательной. Это значит, что температура плавления может повышаться или понижаться с увеличением давления.

Так, для бензола (t пл. = 5,4°C;
= 9986 Дж /моль; V ж = 87,28 см 3 /моль; V т = 86,27 см 3 /моль ) получаем по уравнению (III, 18):

Обратная величина dT / dP = 0,0282
К/Па. Таким образом, с ростом давления вблизи точки плавления температура плавления бензола повышается.

Величина dT / dP положительна для огромного большинства веществ. Она имеет отрицательное значение лишь для воды, висмута и немногих других веществ, для которых плотность жидкости при температуре плавления больше плотности твердой фазы и (V ж V т )

Испарение. Теплота испарения – перехода жидкой фазы в газообразную – так же, как и теплота плавления, положительна. В этом случае всегда объём (удельный, мольный) газа больше соответствующего объёма жидкости, т. е. в уравнении (III, 18) всегда V 2 > V 1 . Поэтому dP / dT , а значит, и dT / dP также всегда положительны. Следовательно, температура испарения всегда повышается с ростом давления.

При температурах, далеких от критической, плотность насыщенного пара во много раз меньше плотности жидкости, а обратная величина – мольный (удельный) объём пара во много раз больше мольного (удельного) объёма жидкости. Поэтому значением V 1 = V ж в уравнении (III, 18) можно пренебречь, и оно примет вид:

(III, 18a)

Если вдали от критической температуры насыщенный пар можно считать идеальным газом, тогда = RT / P , и из уравнения (III, 18) получим 1:

(III, 19)

(III, 19а)

Теплота испарения жидкостей изменяется с температурой, не сильно убывая при средних температурах и очень сильно вблизи критической температуры, при которой
= 0. Например, для Н 2 О:

, кал/г

Таблица 1. Энтальпия и энтропия испарения некоторых жидкостей при нормальной температуре кипения (Р = 1 атм)

Вещество

T кип., K

,
кал/моль

,
кал/моль· K

Кислород

Этиловый эфир

Этиловый спирт

§ 5. Зависимость давления насыщенного пара от температуры

Давление насыщенного пара жидкости резко увеличивается с повышением температуры. Это видно из рис.2, на котором изображены кривые давления пара некоторых жидкостей, начинающиеся в точках плавления и оканчивающиеся в критических точках.

Рис. 2. Зависимость давления насыщенного пара некоторых жидкостей от температуры.

Функциональная зависимость давления насыщенного пара жидкости от температуры может быть выражена уравнением (III, 18), а вдали от критической температуры уравнением (III, 19).

Считая теплоту испарения (возгонки) постоянной в небольшом интервале температур, можно проинтегрировать уравнение (III, 19а)

(III, 20)

Представив уравнение (III, 20) в виде неопределенного интеграла, получим:

(III, 21),

где С – константа интегрирования.

В соответствии с этими уравнениями зависимость давления насыщенного пара жидкости (или кристаллического вещества) от температуры может быть выражена прямой линией в координатах
(в этом случае тангенс наклона прямой равен
). Такая зависимость имеет место лишь в некотором интервале температур, далеких от критической.

На рис.3 изображена зависимость давления насыщенного пара некоторых жидкостей в указанных координатах, удовлетворительно укладывающаяся на прямые линии в интервале 0-100°С.

Однако уравнение (III, 21) не охватывает зависимости давления насыщенного пара от температуры во всем интервале температур – от температуры плавления до критической. С одной стороны, теплота испарения зависит от температуры, и интегрирование должно производиться с учётом этой зависимости. С другой стороны, насыщенный пар при высоких температурах нельзя считать идеальным газом. Поэтому уравнение, охватывающее зависимость P = f (T ) в широком интервале температур, неизбежно становится эмпирическим.

Рис.3. Зависимость логарифма давления насыщенного пара некоторых жидкостей от обратной температуры.

§ 6. Сверхкритическое состояние вещества.

Сверхкритическое состояние – четвертая форма агрегатного состояния, в которое способны переходить многие органические и неорганические вещества.

Впервые сверхкритическое состояние вещества обнаружил Каньяр де ла Тур в 1822 году. Настоящий интерес к новому явлению возник 1869 году после экспериментов Т.Эндрюса. Проводя опыты в толстостенных стеклянных трубках, учёный исследовал свойства CO 2 , легко сжижающегося при повышении давления. В результате он установил, что при 31° С и 7,2 МПа , мениск – граница, разделяющая жидкость и находящийся в равновесии с ней пар, исчезает, при этом система становится гомогенной (однородной) и весь объем приобретает вид молочно-белой опалесцирующей жидкости. При дальнейшем повышении температуры она быстро становится прозрачной и подвижной, состоящей из постоянно перетекающих струй, напоминающих потоки теплого воздуха над нагретой поверхностью. Дальнейшее повышение температуры и давления не приводило к видимым изменениям.

Точку, в которой происходит такой переход, он назвал критической, а состояние вещества, находящегося выше этой точки – сверхкритическим. Несмотря на то, что внешне это состояние напоминает жидкость, в применении к нему сейчас используется специальный термин – сверхкритический флюид (от английского слова fluid , то есть «способный течь»). В современной литературе принято сокращенное обозначение сверхкритических флюидов – СКФ.

Расположение линий, разграничивающих области газообразного, жидкого и твердого состояний, а также положение тройной точки, где сходятся все три области, для каждого вещества индивидуальны. Сверхкритическая область начинается в критической точке (обозначена звездочкой), которая характеризуется непременно двумя параметрами – температурой (Т кр .) и давлением (Р кр .). Понижение либо температуры, либо давления ниже критических значений выводит вещество из сверхкритического состояния.

Факт существования критической точки позволил понять, почему некоторые газы, например, водород, азот и кислород долгое время не удавалось получить в жидком виде при повышении давления, из-за чего их называли перманентными газами (от латинского permanentis – «постоянный»). На приведённой выше диаграмме видно, что область существования жидкой фазы расположена слева от линии критической температуры. Таким образом, для сжижения какого-либо газа его необходимо сначала охладить до температуры ниже критической. У СО 2 критическая температура выше комнатной, поэтому его можно сжижать при указанных условиях, повышая давление. У азота критическая температура намного ниже: –146,95° С, поэтому, если сжимать азот, находящийся при нормальных условиях, можно достичь в конечном итоге сверхкритической области, но жидкий азот при этом образоваться не может. Необходимо сначала охладить азот ниже критической температуры и затем, повышая давление, достичь области, где возможно существование жидкости. Аналогичная ситуация для водорода, кислорода, поэтому перед сжижением их охлаждают до температуры ниже критической, и лишь затем повышают давление. Сверхкритическое состояниевозможно для большинства веществ, нужно лишь, чтобы вещество не разлагалось при критической температуре. В сравнении с указанными веществами критическая точка воды достигается с большим трудом: t кр = 374,2° С и Р кр = 21,4 МПа .

Критическая точка признается как важный физический параметр вещества, такой же, как температуры плавления или кипения. Плотность СКФ исключительно низкая, например, вода в состоянии СКФ имеет плотность в три раза ниже, чем при обычных условиях. Все СКФ имеют крайне низкую вязкость.

Сверхкритические флюиды представляют собой нечто среднее между жидкостью и газом. Они могут сжиматься как газы (обычные жидкости практически несжимаемы) и, в тоже время, способны растворять многие вещества в твёрдом и жидком состояниях, что газам несвойственно. Сверхкритический этанол (при температуре выше 234° С) очень легко растворяет некоторые неорганические соли (CoCl 2 , KBr , KI ). Диоксид углерода, закись азота, этилен и некоторые другие газы в состоянии СКФ приобретают способность растворять многие органические вещества – стеариновую кислоту, парафин, нафталин. Свойства сверхкритического СО 2 как растворителя можно регулировать – при повышении давления его растворяющая способность резко увеличивается.

Сверхкритические флюиды стали широко использовать только в 1980-х, когда общий уровень развития промышленности сделал установки для получения СКФ широко доступными. С этого момента началось интенсивное развитие сверхкритических технологий. СКФ – это не только хорошие растворители, но и вещества с высоким коэффициентом диффузии, т.е. они легко проникают в глубинные слои различных твердых веществ и материалов. Наиболее широкое применение нашёл сверхкритический СО 2 , который оказался растворителем широкого круга органических соединений. Диоксид углерода стал лидером в мире сверхкритических технологий, т.к. обладает целым комплексом преимуществ. Перевести его в сверхкритическое состояние достаточно легко (t кр – 31° С, Р кр – 73,8 атм. ), кроме того, он не токсичен, не горюч, не взрывоопасен, к тому же, дешев и доступен. С точки зрения любого технолога он является идеальным компонентом любого процесса. Особую привлекательность ему придает то, что он является составной частью атмосферного воздуха и, следовательно, не загрязняет окружающую среду. Сверхкритический СО 2 можно считать экологически абсолютно чистым растворителем. Приведём только некоторые примеры его использования.

Кофеин – препарат, используемый для улучшения деятельности сердечно-сосудистой системы, получают из кофейных зерен даже без их предварительного измельчения. Полнота извлечения достигается за счет высокой проникающей способности СКФ. Зерна помещают в автоклав – ёмкость, выдерживающую повышенное давление, затем подают в неё газообразный СО 2 , далее создают необходимое давление (>73 атм. ), в результате СО 2 переходит в сверхкритическое состояние. Всё содержимое перемешивают, после чего флюид вместе с растворенным кофеином сливают в открытую емкость. Диоксид углерода, оказавшись в условиях атмосферного давления, превращается в газ и улетает в атмосферу, а экстрагированный кофеин остается в открытой емкости в чистом виде.

Применение СКФ оказалось весьма успешным для очистки от загрязнений электронных схем в процессе их производства, так как на них не остается никаких следов очищающего растворителя.

В связи с быстрыми темпами выработки активной части запасов легкой нефти резко возрос интерес к методам увеличения нефтеотдачи пластов. Если в 70–80 годы XX века число проектов, направленных на решение проблемы увеличения нефтеотдачи посредством нагнетания смешивающихся углеводородных растворителей, «инертных» газов и диоксида углерода было сопоставимо, то в конце XX и начале XXI столетий только метод нагнетания СО 2 имел устойчивую тенденцию роста. Эффективность применения СО 2 для повышения нефтеотдачи доказана не только экспериментальными и теоретическими работами, но и результатами многочисленных промышленных испытаний.

Не стоит забывать, что технология увеличения нефтеотдачи пластов с использованием СО 2 позволяет параллельно решать проблему консервации огромного количества выделяемого промышленностью углекислого газа.

Особенности процесса воздействия нагнетаемого CO 2 на нефтегазовую залежь зависят от его агрегатного состояния.

Превышение давления и температуры выше критических значений для углекислого газа (а это наиболее вероятная ситуация в пластовых условиях), предопределяет его сверхкритическое состояние. В этом случае CO 2 , обладающий исключительной растворяющей способностью по отношению к углеводородным жидкостям при прямом растворении в пластовой нефти, снижает её вязкость и резко улучшает фильтрационные свойства. Указанное обстоятельство даёт все основания отнести СКФ – технологии повышения нефтеотдачи пластов к одним из наиболее перспективных.

Физическая химия (органическая химия , часть I). В.А.Старцева, Л.Е.Никитина, Н.П. ...

  • Контрольная работа №2 по физической химии

    Документ

    Контрольная работа № 2 по физической химии Вариант 2 Чему равен температурный... . Контрольная работа № 2 по физической химии Вариант 3 Перечислите физико-химические величины... Контрольная работа № 2 по физической химии Вариант 12 Электроды определения. ...

  • Методическое пособие для лабораторной работы №4 по курсу физической химии для студентов дневной формы обучения химико-технологического факультета и факультета строительного материаловедения

    Методическое пособие

    ВЕЛИЧИНЫ КОНСТАНТЫ РАВНОВЕСИЯ В практикумах по физической химии часто встречается лабораторная работа, касающаяся... с. 3. Петров Н.А., Черепанов В.А. Ермишина Ю.А. Практикум по физической химии . Методическое пособие. Екатеринбург: изд-во...

  • Программа вступительного экзамена по специальности 02. 00. 04 "физическая химия"

    Программа

    Равновесия // М.: Металлургия.-1988.-560с. Курс физической химии / Я.И. Герасимов, В.П. Древинг, Е.И. Ермин и др.: под... .- 1980.- 180с. Горшков Б.И., кузнецов И.А. / Основы физической химии . 2–е изд. // М.: Изд-во Московского университета...

  • Уравнение Клапейрона-Клаузиуса (дифференциальное).

    Читайте также:
    1. Адиабатный процесс. Уравнение адиабаты идеального газа. Работа идеального газа при адиабатическом изменении его объема.
    2. Бюджетная линия потребителя. Наклон бюджетной линии. Понятие бюджетного множества. Уравнение бюджетной линии.
    3. Вопрос № 38. Основное уравнение работы центробежных насосов.
    4. Вопрос № 6.Химические реакции металлургических процессов. Оценка самопроизвольности их протекания. Уравнение изотермы Вант- Гоффа.
    5. Вопрос № 9.Подвижность химического равновесия. Принцип Ле Шателье. Уравнение изохоры и изобары Вант- Гоффа.
    6. Вопрос №12. Уравнение молотильного аппарата акад. В.П. Горячкина. Следствия из уравнения. Основные регулировки молотильных аппаратов.
    7. Вопрос №20. Основное уравнение равномерного движения жидкости. Формула Шези.

    Кривая равновесия жидкость – пар или, что тоже самое, зависимость давления насыщенных паров от температуры, для данного вещества может быть найдена решением так называемого уравнения Клапейрона – Клаузиуса.

    Метод термодинамических циклов позволяет установить вид этого уравнения. Пусть имеются две экспериментальные изотермы, которым соответствуют температуры и (рис. 50).

    В исходном состоянии 1 один моль жидкости находится под давлением при температуре и занимает объем (паровой фазы нет). Подводя тепло, испарим изотермически этот моль жидкости. При этом жидкость все время будет находиться под давлением, равном давлению ее насыщенных паров. В результате жидкость перейдет в газообразное состояние 2. Количество теплоты, необходимое для перевода одного моля жидкости в газообразное состояние при постоянных температуре и давлении, по определению, является скрытой теплотой испарения . Таким образом, при переходе 12 жидкость получила количество теплоты, равное .

    Работа, произведенная за цикл, численно равна площади четырехугольника 1234:

    (3.3.1)

    а КПД цикла

    . (3.3.2)

    С другой стороны, цикл 1234 является циклом Карно, поэтому его КПД

    (3.3.3)

    Сравнивая выражения (3.3.2) и (3.3.3), получим

    . (3.3.4)

    Уравнение (3.3.4) можно представить в несколько ином виде. Для этого найдем изменение энтропии при переходе жидкости из состояния 1 в газообразное состояние 2 (рис. 50).

    , (3.3.5)

    где и – энтропии жидкости в состоянии 1 и пара в состоянии 2 соответственно. Используя последнее соотношение уравнение (3.3.4) можно записать следующим образом:

    . (3.3.6)

    Дифференциальное уравнение (3.3.4) является уравнением Клапейрона – Клаузиуса. В этом уравнении представляет изменение давления насыщенного пара при изменении температуры на . Для нахождения решения этого уравнения необходимо располагать зависимостью скрытой теплоты испарения от температуры, а также зависимостью объемов жидкости и газа от температуры и давления. В общем случае это уравнение является нелинейным дифференциальным уравнением, решение которого находится численным интегрированием.



    При температурах, значительно меньших критической, объем , занимаемый жидкостью, намного меньше объема , занимаемого napом, т. е. . Так, например, объем водяного пара при в 1600 раз больше объема воды, кипение жидкого кислорода при температуре – С сопровождается увеличением объема примерно в 300 раз. Поэтому при температурах уравнение (3.3.4) примет вид

    . (3.3.7)

    В этом же приближении насыщенный пар можно считать идеальным газом и тогда . Это позволяет записать уравнение (3.3.7) в виде:

    . (3.3.8)

    Интегрируя левую часть уравнения (3.3.8) в пределах от до , а правую – в пределах от до , получим

    , (3.3.9)

    где – получаемое из опыта давление насыщенного пара при температуре , а – среднее значение теплоты испарения на интервале температур

    Из формулы (3.3.9) видно, что давление насыщенных паров растет экспоненциально с ростом температуры.

    Уравнение Клапейрона – Клаузиуса переписанное в виде

    , (3.3.10)

    как мы покажем в дальнейшем, определяет также зависимость температуры кипения жидкости от внешнего давления. В уравнении (3.3.10)



    – это изменение температуры кипения при изменении внешнего давления на . Поэтому кривую равновесия жидкость – пар называют также кривой кипения.

    52. Уравнение Ван-дер-Ваальса – Уравнение состояния неидеальных газов. Опытное определение констант уравнения Ван-дер-Ваальса.

    Как отмечалось ранее, при низких температурах и высоких давлениях уравнение Менделеева – Клапейрона для одного моля вещества

    дает существенные отклонения от значений, измеряемых на опыте.

    Были сделаны многочисленные попытки найти уравнение состояния для реального вещества, которое могло бы охватить, если не все состояния вещества, то хотя бы газообразное и жидкое. Из множества предложенных уравнений наибольшей известностью пользуется уравнение Ван-дер-Ваальса:

    , (3.4.2)

    записанное для одного моля вещества. Для молей это уравнение имеет вид:

    . (3.4.3)

    Постоянные и определяются экспериментально и имеют различные значения для разного сорта молекул. Уравнение (3.4.2) не выводится, оно устанавливается введением в уже известное уравнение Менделеева – Клапейрона двух поправок. Чтобы обосновать их введение заметим, что в уравнении (3.4.2) объем означает объем сосуда, в котором содержится один моль газа. В случае идеального газа, состоящего из материальных точек, весь этот объем доступендля движения молекул. В реальном газе сами молекулы занимают некоторую часть объема сосуда, и эта часть недоступна для всех других молекул. Эту часть объема следует вычесть из объема . Тогда уравнение (3.4.2) приобретет вид

    . (3.4.4)

    Из последнего выражения видно, что поправка равна тому объему, который занимал бы газ при бесконечно большом давлении, т. е. молекулы реального газа не могут сблизиться друг с другом до расстояния равного нулю, даже при бесконечно большом давлении. Поэтому введение поправки означает приблизительный учет сил отталкивания между молекулами.

    Как мы знаем, между молекулами действуют не только силы отталкивания, но и силы притяжения. Любая молекула, расположенная вблизи стенки сосуда испытывает результирующую силу притяжения

    со стороны молекул, расположенных в сфере действия сил притяжения (рис. 51).

    На поверхности стенки выберем площадку . Пусть на ней оказалось молекул. Тогда результирующая сила, действующая на молекулы этой площадки со стороны газа

    , (3.4.6)

    так как из условий симметрии все силы имеют одинаковую величину и направление. Если силу разделить на площадь , получим так называемое молекулярное давление , с которым молекулы, находящиеся у стенки, действуют на остальную массу газа:

    . (3.4.7)

    Каждый из сомножителей в формуле (3.4.7), очевидно, пропорционален плотности газа, которая, в свою очередь, обратно пропорциональна объему газа, поэтому можно записать:

    , (3.4.8)

    где a – положительный постоянный коэффициент.

    Таким образом, в результате действия сил притяжения давление на стенку со стороны газа будет меньше, по сравнению с тем давлением (3.4.4), которое испытала бы стенка, если бы сил притяжения между молекулами не было, т. е.

    .

    Откуда находим уравнение Ван-дер-Ваальса:

    . (3.4.9)

    Поясним появление в формуле (3.4.9) добавочного давления. Пусть газ находится в цилиндре под невесомым поршнем. Внешнее давление стремится сжать газ, т. е. сблизить его молекулы. Если бы молекулы газа друг друга не притягивали, газ испытывал бы на себе одно только внешнее давление . Но взаимное притяжение молекул, как мы выяснили, также стремится приблизить молекулы друг к другу, т. е. действует в том же направлении, как и внешнее давление . Поэтому результат притяжения молекул сказывается в кажущемся увеличении внешнего давления на газ, как будто бы к величине давления на поршень прибавилось некоторое добавочное давление .

    Опытное определение констант уравнения Ван-дер-Ваальса

    Для опытного определения постоянных a и исследуемый газ помещаем в закрытый сосуд объема со встроенным манометром и измеряют давление этого газа при различных температурах. Численным дифференцированием полученной на опыте кривой определяем частную производную . Из уравнения Ван-дер-Ваальса находим эту производную

    . (3.5.1)

    Отсюда получаем величину :

    . (3.5.2)

    Подставляя выражение (3.5.2) в уравнение Ван-дер-Ваальса (3.4.9), вычисляем другую величину a :

    . (3.5.3)

    Опыт показал, что величины a и не являются константами, а зависят от температуры, хотя и слабо. В расчетах, использующих уравнение Ван-дер-Ваальса, в качестве констант a и берут средние значения функций и в интересующем интервале температур

    53. Изотермы уравнения Ван-дер-Ваальса и их сравнение с экспериментальными изотермами. Определение критических параметров вещества из уравнения ВдВ. Метастабильные состояния вещества – пересыщенный пар и перегретая жидкость. Камера Вильсона и пузырьковая камера.

    На рис. 52 представлены изотермы газа Ван-дер-Ваальса.

    При очень высоких температурах они имеют форму, близкую к гиперболам ; эти изотермы характеризуют газообразное состояние вещества (почти идеальный газ). По мере уменьшения температуры форма изотермы изменяется и при некоторой температуре (критическая) обнаруживает точку перегиба кривой. При еще меньших температурах (докритических) изотермы вместо горизонтального участка, соответствующего фазовому переходу жидкость – пар, имеют волнообразный участок (рис. 53).

    Р и с. 52 Р и с. 53

    Измерения показывают, что изотермы реального вещества практически совпадают с изотермой Ван-дер-Ваальса на участках (газообразное состояние) и (жидкое состояние). Однако в средней части вместо горизонтального участка 51, соответствующего фазовому переходу жидкость – пар, изотерма Ван-дер-Ваальса имеет волнообразный участок . Этот волнообразный участок характеризуется следующим образом. Участок 12 соответствует метастабильному состоянию пара (пересыщенный пар), а участок 54 – метастабильному состоянию жидкости (перегретая жидкость). В точке 1 имеется только насыщенный пар, а в точке 5 – только кипящая жидкость. Что касается участка 234 волнообразной кривой, то он физически неосуществим, так как в природе нет веществ, для которых при постоянной температуре увеличение объема приводило бы к росту давления. Последнее возможно только в случае, если на этом участке температура не является постоянной. Пересыщенный пар (участок 12) – газообразное состояние вещества, в котором давление p больше, чем давление насыщенного пара при данной температуре – можно на опыте получить, сжимая чистый газ до давления, большего давления насыщенных паров, и он не будет конденсироваться. Состояние пересыщенного пара, хотя и обладает определенной устойчивостью, но оно менее устойчиво, чем двухфазное состояние (изобара 135), при котором, как мы знаем, часть вещества находится в виде жидкости, а часть – в виде насыщенного пара. Поэтому при небольшом внешнем воздействии пересыщенный пар частично переходит в жидкость, а оставшийся пар становится насыщенным.

    Перегретую жидкость (участок 45) – состояние, характеризующееся тем, что оно существует при давлении более низком, чем давление насыщенного пара при данной температуре – можно получить при длительном кипячении чистой жидкости, в результате чего из жидкости удаляются газовые пузырьки (центры парообразования), и жидкость нагревается до температуры выше температуры кипения при данном давлении. Состояние перегретой жидкости также оказывается менее устойчивым, чем состояние равновесия между жидкостью и насыщенным паром. Если в такую перегретую жидкость ввести частицы постороннего вещества, то совершается быстрый переход ее в двухфазное состояние.

    Состояния пересыщенного пара и перегретой жидкости используются в приборах ядерной физики (камера Вильсона и пузырьковая камера) для регистрации и измерения параметров элементарных частиц.

    Если на изотерме Ван-дер-Ваальса волнообразный участок заменить некоторой горизонтальной прямой 135, то полученная так изотерма будет качественно правильно описывать и двухфазное состояние вещества. Положение этой прямой может быть определено, если к замкнутому обратимому циклу 1234531 применить второе начало термодинамики в записи Клаузиуса (2.13.7):

    . (3.6.1)

    Поскольку вдоль всего пути 1234531 температура вещества остается неизменной (ибо этот путь составлен из участков двух возможных вариантов одной и той же изотермы), то последнее уравнение может быть записано в виде

    . (3.6.5) с экспериментальными данными свидетельствуют, что уравнение Ван-дер-Ваальса, из которого эта величина получена, является приближенным, хотя качественная картина изменения состояния вещества передается уравнением достаточно правильно. Известно большое число попыток получения более точного уравнения состояния вещества. Однако эти уравнения содержат большое число поправочных коэффициентов, физический смысл которых неясен, как в уравнении Ван-дер-Ваальса.

    В наиболее общем виде методами статистической физики академиком Н. Н. Боголюбовым получено уравнение состояния

    , (3.6.12)

    где – так называемые вириальные коэффициенты, которые являются функциями только температуры. Из уравнения Боголюбова следует, что чем большее значение молярного объема , тем меньшее число членов ряда следует учитывать для получения достаточно точного результата. При все члены степенного ряда обращаются в нуль, и уравнение (3.6.12) приобретает вид , т. е., как и следовало ожидать, уравнение Боголюбова превращается в уравнение Менделеева – Клапейрона. Вириальные коэффициенты не могут быть вычислены чисто теоретическими методами и поэтому должны определяться с помощью экспериментальных данных. Однако эта задача оказывается настолько сложной, что более целесообразным является получение уравнения состояния просто в виде интерполяционной формулы, описывающей экспериментальные данные.

    ОПРЕДЕЛЕНИЕ

    Две любые фазы одного и того же вещества могут находиться в равновесии лишь при определенном давлении, величина которого зависит от температуры. Для двухфазной равновесной однокомпонентной системы является функцией температуры. Эта зависимость выражается уравнением Клапейрона – Клаузиуса :

    где — удельная теплота фазового перехода из первой фазы во вторую, – разность удельных объемов фаз.

    Уравнение 1 связывает производную от равновесного давления по температуре с теплотой перехода, температурой и разностью удельных объемов фаз, находящихся в . Согласно уравнению (1) знак производной зависит от того, каким изменением объема – возрастанием или уменьшением сопровождается фазовый переход. При испарении жидкости или твердого тела объем всегда увеличивается, поэтому для кривых испарения и сублимации title="Rendered by QuickLaTeX.com" height="23" width="54" style="vertical-align: -6px;">, увеличение температуры ведет к увеличению равновесного давления. При плавлении, как правило, объем увеличивается, что означает, что повышая давление мы увеличиваем температуру плавления. Но здесь есть исключения, например, лед-вода. Объем жидкой фазы (воды) меньше, объема льда. Лед можно расплавить, не повышая температуру выше , просто увеличивая давление.

    Если вторая фаза является идеальным газом, то уравнение Клапейрона – Клаузиуса имеет вид:

    где – теплота испарения для одного моля вещества, молярная которого равна .

    Решение уравнения Клапейрона — Клаузиуса

    Решением уравнения (2) будет:

    где Q – количество теплоты, необходимое для фазового перехода

    Строго говоря, общий вид функции p(T), то есть уравнение (1), был установлен Клапейроном, при анализе цикла Карно для конденсирующегося пара, который находится в равновесии с жидкостью, а Клаузиус упростил его до уравнения (2) предположив, что вторая фаза вещества (пар) – идеальный газ и молярный объем жидкости много меньше, чем молярный объем газа (пара). Кроме того, Клаузиус распространил уравнение (1) для других фазовых переходов, которые сопровождаются теплопередачей.

    Уравнение 1 и 2 часто используются для расчета теплоты испарения или возгонки (это трудно установить экспериментально).

    Примеры решения задач

    ПРИМЕР 1

    Задание Фазовый переход некоторого вещества происходит при температуре T, при атмосферном давлении. Удельная теплота превращения q. Скачок удельного объема данного вещества при фазовом превращении Найти смещение точки фазового перехода данного вещества при изменении давления на .
    Решение При заданных условиях уравнение Клапейрона – Клаузиуса можно записать в следующем виде:

    Из этого уравнения легко выразить искомое смещение температуры, точки фазового перехода при изменении :

    Ответ Смещение точки фазового перехода при заданных условиях можно найти используя соотношение

    ПРИМЕР 2

    Задание В закрытом сосуде находятся вода и насыщенный пар. Найти удельную теплоту испарения воды при температуре . Если упругость паров , насыщающих пространство при данной температуре Па, а при температуре равна Па.


    Решение Основой для решения задачи является уравнение

    где , напомню, что здесь идет речь об удельных объемах.

    и для одного моль ( моль) газа запишем:

    Для того, чтобы определиться с дальнейшим ходом расчетов найдем объем моля пара и оценим объем жидкости, сравним их.

    Понравилась статья? Поделиться с друзьями: