Реферат: Окислительно-восстановительное титрование. Тема ii

Введение

Титриметрический или объемный метод анализа является одним из методов количественного анализа. В основе этого метода лежит точное измерение объемов растворов двух веществ, реагирующих между собой. Количественное определение с помощью титриметрического метода анализа выполняется довольно быстро, что позволяет проводить несколько параллельных определений и получать более точное среднее арифметическое. В основе всех расчетов титриметрического метода анализа лежит закон эквивалентов.

Титрование - это постепенное прибавление титрованного раствора реагента (титранта) к анализируемому раствору для определения точки эквивалентности. Титриметрический метод анализа основан на измерении объема реагента точно известной концентрации, затраченного на реакцию взаимодействия с определяемым веществом. Точка эквивалентности - момент титрования, когда достигнуто эквивалентное соотношение реагирующих веществ.

К реакциям, применяемым в количественном объемном анализе, предъявляют следующие требования:

Реакция должна протекать в соответствии со стехиометрическим уравнением реакции и должна быть практически необратима. Результат реакции должен отражать количество анализируемого вещества. Константа равновесия реакции должна быть достаточно велика.

Реакция должна протекать без побочных реакций, иначе нельзя применять закон эквивалентов.

Реакция должна протекать с достаточно большой скоростью, т.е. за 1-3 секунды. Это главное достоинство титриметрического анализа.

Должен существовать способ фиксирования точки эквивалентности. Окончание реакции должно определяться достаточно легко и просто.

Если реакция не удовлетворяет хотя бы одному из этих требований, она не может быть использована в титриметрическом анализе.

В основе многих методов обнаружения, определения и разделения веществ лежат окислительно-восстановительные (редокс) реакции. Те титриметрические методы, в которых в качестве титрантов используют растворы окислителей или восстановителей, называют окислительно-восстановительными (редоксиметрическими) методами титрования.

1. Теоретические основы методов

Из всех типов химических реакций, используемых в количественном анализе, окислительно-восстановительные - наиболее сложные по механизму. Тем не менее, можно установить некоторую аналогию для окислительно-восстановительных реакций и реакций кислотно-основного взаимодействия: обмен протонов при кислотно-основном взаимодействии и обмен электронов в окислительно-восстановительных реакциях, восстановитель - донор электронов аналогичен кислоте - донору протонов, окислитель - аналог основания, окисленная и восстановленная формы составляют сопряженную пару подобно кислотной и основной формам; соотношение концентраций этих форм количественно характеризует окислительную способность (потенциал) системы и кислотность (рН) соответственно.

1.1 Окислительно-восстановительные системы

Отличительным признаком окислительно-восстановительных реакций является перенос электронов между реагирующими частицами - ионами, атомами, молекулами и комплексами, в результате чего изменяется степень окисления этих частиц, например

Fe2+ ̶ e̅ = Fe3+.

Поскольку электроны не могут накапливаться в растворе, одновременно должны проходить два процесса - потери и приобретения, т. е. процесс окисления одних и восстановления других частиц. Таким образом, любая окислительно-восстановительная реакция всегда может быть представлена в виде двух полуреакций:

аOx1 + bRed2 = аRed1 + bOx2

Исходная частица и продукт каждой полуреакции составляют окислительно-восстановительную пару или систему. В вышеприведенных полуреакциях Red1 является сопряженым с Ox1, а Ox2 сопряжен с Red1.

В качестве доноров или акцепторов электронов могут выступать не только частицы, находящиеся в растворе, но и электроды. В этом случае окислительно-восстановительная реакция происходит на границе электрод - раствор и называется электрохимической.

Окислительно-восстановительные реакции, как и все химические реакции, в той или иной мере обратимы. Направление реакций определяется соотношением электронно-донорных свойств компонентов системы одной окислительно-восстановительной полуреакции и электронно-акцепторных свойств второй (при условии постоянства фактров, влияющих на смещение равновесия). Перемещение электронов в ходе окислительно-восстановительной реакции приводит к возникновению потенциала. Таким образом, потенциал, измеренный в вольтах, служит мерой окислительно-восстановительной способности соединения.

Для количественной оценки окислительных (восстановительных) свойств системы в раствор погружают электрод из химически инертного материала. На границе раздела фаз происходит электроннообменный процесс, приводящий к возникновению потенциала, являющегося функцией активности электронов в растворе. Значение потенциала тем больше, чем выше окислительная способность раствора.

Абсолютное значение потенциала системы измерить нельзя. Однако, если выбрать одну из окислительно-восстановительных систем в качестве стандартной, то относительно нее становится возможным измерение потенциала любой другой окислительно-восстановительной системы независимо от выбранного индифферентного электрода. В качестве стандартной выбирают систему Н+/Н2, потенциал которой принят равным нулю.

Рис. 1. Схема стандартного водородного электрода

1. Платиновый электрод.

2. Подводимый газообразный водород.

3. Раствор кислоты (обычно HCl <#"522214.files/image003.gif">

или отрицательным, если система играет роль восстановителя, а на водородном электроде происходит полуреакция восстановления:


Абсолютное значение стандартного потенциала характеризует «силу» окислителя или восстановителя.

Стандартный потенциал - термодинамическая стандартизированная величина - является очень важным физико-химическим и аналитическим параметром, позволяющим оценивать направление соответствующей реакции и рассчитывать активности реагирующих частиц в условиях равновесия.

Для характеристики окислительно-восстановительной системы в конкретных условиях пользуются понятием реального (формального) потенциала Е0", который соответствует потенциалу, установившемуся на электроде в данном конкретном растворе при равенстве 1 моль/л исходных концентраций окисленной и восстановленной форм потенциалопределяющих ионов и зафиксированной концентрации всех прочих компонентов раствора.

Реальные потенциалы с аналитической точки зрения более ценны, чем стандартные потенциалы, так как истинное поведение системы определяется не стандартным, а реальным потенциалом и именно последний позволяет предвидеть протекание окислительно-восстановительной реакции в конкретных условиях. Реальный потенциал системы зависит от кислотности, присутствия посторонних ионов в растворе и может изменяться в широком диапазоне.

1.2 Уравнение Нернста

Для условий, отличных от стандартных (активности потенциалопределяющих ионов не равны единице), равновесный потенциал окислительно-восстановительной полуреакции

аOx + n e̅ = bRed

может быть рассчитан с помощью уравнения Нернста:


где Е0 - стандартный потенциал, В; R - универсальная газовая постоянная, равная 8,314 Дж∙моль-1∙К-1; Т - абсолютная температура, К; n -число электронов, участвующих в полуреакции; F - постоянная Фарадея, равная 96500 Кл∙моль-1.

После подстановки указанных величин (Т=298К) и замены натурального логарифма на десятичный, уравнение Нернста принимает вид:


Ecли учесть, что a = γ[C], то

Для разбавленных растворов а ≈ С; активность металлов, чистых твердых фаз и растворителей принимают равной единице, активность газа - его парциальному давлению.

Потенциал окислительно-восстановительной системы равен ее стандартному потенциалу, если aOx = aRed = 1. В общем случае потенциал, характеризующий окислительно-восстановительную систему зависит от природы ее компонентов (Е0) и отношения активностей (концентраций) восстановленной и окисленной форм. Величина Е0" отражает влияние на потенциал веществ, концентрация которых в растворе не изменяется в ходе окислительно-восстановительной реакции.

Уравнение Нернста применимо для термодинамически обратимых окислительно-восстановительных полуреакций. Для необратимых систем предлогарифмический коэффициент 0,059/n отличается от теоретически рассчитанного.

Если реакция протекает с участием молекул или ионов среды, то их концентрации также вводят в уравнение Нернста. Так для полуреакции уравнение Нернста может быть записано следующим образом:

.

Реальный потенциал редокс-пары титрантов окислителей должен иметь значение потенциала на 0,4 - 0,5 В выше, чем потенциал редокс-пары титруемого восстановителя , только в таком случае выполняются требования к реакциям в редоксиметрии. Для регулирования потенциала редокс-пар титранта и определяемого вещества используют изменение рН среды, комплексообразующие добавки, увеличение температуры и т.д.

Равновесный окислительно-восстановительный потенциал зависит от ряда факторов:

) От рН среды. Стандартный окислительно-восстановительный потенциал для приведенной выше реакции . С увеличением рН раствора окислительно-восстановительный потенциал этой пары будет уменьшаться.

) От концентрации (активности) окисленной и восстановленной форм окислителя или восстановителя. С изменением концентраций (активностей) окисленной и восстановленной форм величина редокс-потенциала может изменяться. Например, для пары при условии стандартный окислительно-восстановительный потенциал равен 0,77 В. Уравнение Нернста для полуреакции имеет вид:

.

Изменяя концентрации окисленной или восстановленной форм вещества можно изменить величину редокс-потенциала.

3) От процесса комплексообразования. Величина редокс-потенциала значительно изменяется, если окисленная или восстановленная форма вещества в анализируемом растворе участвует в процессе комплексообразования.

Потенциал редокс-пары, например, в отсутствии комплексообразования будет при 25 0С равен:


При комплексообразовании с лигандом концентрация ионов уменьшится:

Константа устойчивости равна:

.

Из данного выражения концентрация ионов

,

Подставив ее в исходное уравнение Нернста, после ряда преобразований получим:

4) От образования малорастворимых веществ. В присутствии ионов, способных образовывать малорастворимые соединения, потенциал окислительно-восстановительной пары можно вычислить следующим образом:

.

2. Кривые титрования

В титриметрических методах расчет и построение кривой титрования дают возможность оценить, насколько успешным будет титрование, и позволяют выбрать индикатор. При построении кривой окислительно-восстановительного титрования по оси ординат откладывают потенциал системы, а по оси абсцисс - объем титранта или процент оттитровывания.

Рассмотрим в качестве примера титрование 100 мл 0,1н раствора FeSO4 0,1н раствором KMnO4 в кислой среде ([Н+] = 1 моль/л):

В любой момент титрования раствор всегда содержит две окислительно-восстановительные пары: Fe3+/Fe2+ и MnO4-/Mn2+. Концентрации реагирующих веществ устанавливаются таким образом, что при равновесии потенциалы двух систем равны в любой точке кривой титрования. Следовательно, для вычисления потенциала пригодны два уравнения:

,

.

Рассчитанные значения потенциалов удовлетворяют обоим уравнениям, но расчет может быть упрощен, исходя из следующего. Пока оттитрованы еще не все ионы Fe2+, концентрации Fe3+ и Fe2+ вычислить легко. Концентрацию не вошедших в реакцию ионов MnO4- вычислить гораздо труднее, так как приходится использовать константу равновесия данной окислительно-восстановительной реакции, которая должна быть известна. Поэтому вначале до точки эквивалентности удобнее пользоваться уравнением для системы Fe3+/Fe2+.

При введении избытка перманганата легко рассчитать концентрации MnO4- и Mn2+ и значение потенциала, обусловленное этой парой.

) Расчет потенциала до начала титрования. Рассчитывая первую точку на кривой титрования до прибавления перманганата в раствор, нужно учитывать, что в растворе не могут присутствовать только ионы Fe2+, а всегда в малой концентрации присутствуют и ионы Fe3+, но равновесная концентрация их неизвестна. По этой причине при расчете кривых окислительно-восстановительного титрования обычно не приводят значение потенциала для этой точки, соответствующей моменту, когда в исследуемый раствор еще не прибавлен титрант.

) Расчет потенциала в процессе титрования до точки эквивалентности. Вычислим потенциал системы для точки на кривой, когда к 100 мл 0,1н раствора FeSO4 прибавлено 50 мл 0,1н раствора KMnO4 (50% оттитровывания). При этом в растворе находятся три компонента реакции Fe3+ , Fe2+ и Mn2+; концентрация четвертого (MnO4-) очень низка. Равновесная концентрация ионов Mn2+ равна общей концентрации раствора KMnO4 за вычетом пренебрежительно малой концентрации непрореагировавших перманганат-ионов:


Такое приближение допустимо, поскольку константа равновесия этой реакции велика (К≈1064). Такова же концентрация ионов Fe3+:

Подставляя значения равновесных концентраций железа (II) и железа (III), получаем:

т. е. при оттитровывании 50% определяемого вещества потенциал системы равен стандартному потенциалу окислительно-восстановительной пары определяемого вещества.

Особый интерес представляют те точки на кривой титрования, которые соответствуют 0,1 мл недостатка и 0,1 мл избытка KMnO4 (0,1% эквивалентного объема), так как они определяют скачок потенциала вблизи точки эквивалентности. Вычислим первую из них (начало скачка). Поскольку в этот момент прилито 99,9 мл раствора KMnO4, то в растворе осталось неоттитрованным Fe2+ в объеме 0,1 мл. Следовательно, для этого момента:

,

3) Расчет потенциала в точке эквивалентности. В приведенных выше уравнениях для значений потенциалов реагирующих окислительно-восстановительных пар уравняем коэффициенты при членах, содержащих логарифмы, путем умножения второго члена уравнения на 5. После этого оба уравнения почленно сложим, учитывая, что [Н+] = 1 моль/л:

-----------------

.

Так как в точке эквивалентности ионы MnO4- вводят в раствор в количестве, соответствующем уравнению реакции, то при равновесии на каждый MnO4- -ион должно приходиться 5 ионов Fe2+. Следовательно, в точке эквивалентности концентрация ионов Fe2+ в 5 раз больше концентрации MnO4- -ионов, т. е. = 5. В то же время = 5. Поделив второе из этих равенств на первое, получаем:

и .= 0, 6E = 0,77 + 5 ∙ 1,51,

E = (0,77 + 5 ∙ 1,51)/6 = 1,39B.

В общем случае потенциал в точке эквивалентности рассчитывают по формуле

где а - число электронов, принятых окислителем; b - число электронов, отданных восстановителем.

) Расчет потенциала после точки эквивалентности. При введении 100,1 мл раствора KMnO4 (конец скачка) раствор кроме эквивалентных количеств ионов Fe3+ и Mn2+ содержит избыток ионов MnO4-. Концентрация железа (II) очень мала, поэтому:

и потенциал системы в этот момент титрования равен

Скачок потенциала составляет 1,48 - 0,95 = 0,53 В. Результаты расчета кривой титрования сведены в табл. 1 и представлены на рис.2.

Как следует из табл.1 и рис.2 кривая титрования ассиметрична. Скачок титрования находится в интервале 0,95 - 1,48 В, а точка эквивалентности лежит не в середине скачка.

Табл.1. Изменение окислительно-восстановительного потенциала при титровании 100 мл 0,1н раствора FeSO4 0,1н раствором KMnO4.

Этапы титро-вания

Прибав-лено KMnO4, мл

Избыток, мл

ВычисленияЕ, В














E = 0,77 + 0,059lg100,82





E = 0,77 + 0,059lg1000,88





E = 0,77 + 0,059lg10000,95




E = (0,77 + 5∙1,51)/(5 + 1)

E = 1,51 + (0,059/5)lg0,0011,47




E = 1,51 + (0,059/5)lg0,011,48




E = 1,51 + (0,059/5)lg0,11,49




E = 1,51 + (0,059/5)lg11,51




Рис.2. Кривая титрования 100 мл 0,1н раствора FeSO4 0,1н раствором KMnO4 ([Н+] = 1 моль/л).

При двукратном избытке титранта потенциал системы равен стандартному потенциалу окислительно-восстановительной пары титранта.


При более строгом расчете кривых титрования следует использовать вместо стандартных реальные потенциалы.

2.2 Влияние условий титрования на ход кривых

окислительный восстановительный титрование

Кривая титрования построена, исходя из значений окислительно-восстановительных потенциалов, поэтому все факторы, влияющие на потенциал, будут оказывать влияние на форму кривой титрования и скачок на ней. К таким факторам относят значения стандартного потенциала систем определяемого вещества и титранта, число электронов, участвующих в полуреакциях, рН раствора, присутствие комплексообразующих реагентов или осадителей, природу кислоты. Чем большее число электронов принимает участие в окислительно-восстановительной реакции, тем более пологая кривая характеризует данное титрование. Скачок титрования тем больше, чем больше разница окислительно-восстановительных потенциалов окислителя и восстановителя. При очень малой разнице их окислительно-восстановительных потенциалов титрование невозможно. Так титрование ионов Cl- (Е = 1,36В) перманганатом (Е = 1,51) практически невозможно. Часто бывает необходимо расширить интервал потенциалов, в котором находится скачок, если он мал. В таких случаях прибегают к регулированию скачка.

Значительно влияет на размер скачка уменьшение концентрации одного из компонентов окислительно-восстановительной пары (например, с помощью комплексообразующего реагента). Предположим, что в раствор вводят фосфорную кислоту, фториды или оксалаты, образующие комплексы с железом (III) и не взаимодействующие с железом (II), при этом потенциал пары Fe3+/Fe2+ понижается. Если, например, вследствие реакции конкурирующего комплексообразования концентрация ионов Fe3+ в растворе понизится в 10 000 раз, скачок потенциала на кривой титрования начнется уже не при Е = 0,95В, а при Е = 0,71В. Окончится он, как и раньше, при Е = 1,48В. Таким образом, область скачка на кривой титрования окажется значительно расширенной.

Повышение температуры, соответственно, увеличивает потенциал системы титранта и определяемого вещества.

Итак, при выборе оптимальных условий окислительно-восстановительного титрования следует прежде всего учитывать их влияние на состояние окислительно-восстановительной системы, а следовательно, на реальный окислительно-восстановительный потенциал.

2.3 Титрование многокомпонентных систем

Анализируемый раствор может содержать несколько восстановителей или окислителей. Дифференцированное определение их возможно при условии, если на кривой титрования имеется несколько хорошо разделенных скачков достаточной протяженности. При этом разность между стандартными потенциалами определяемых систем должна быть не менее 0,2 В.

Например, при титровании перманганатом калия раствора, содержащего ионы Fe2+ и Ti3+ , вначале будет титроваться более сильный восстановитель Ti3+. Поэтому первая часть кривой титрования определяется стехиометрическим соотношением титана (IV) и титана (III), и потенциал может быть рассчитан по уравнению:


Кривая идентична случаю титрования индивидуального раствора титана (III).

Рис. 3. Кривая титрования 50 мл раствора, содержащего 0,1 (моль∙экв)/л Ti3+ и 0,2 (моль∙экв)/л Fe2+ 0,1н раствором KMnO4 ([Н+] = 1 моль/л).

Потенциал в момент оттитровывания Ti3+ может быть рассчитан, если сложить почленно уравнения Нернста для систем Fe3+/Fe2+ и TiO2+/ Ti3+. Поскольку потенциалы окислительно-восстановительных систем при равновесии можно записать:

.

Учитывая, что ΔЕ окислительно-восстановительных пар TiO2+/ Ti3+ и Fe3+/Fe2+ значительно больше 0,2 В, можно считать, что основным источником ионов Fe3+ в растворе в этой точке является реакция:

TiO2+ + Fe2+ + Н+ = Fe3+ + Ti3+ + Н2О

и, следовательно, = . Подстановка этого соотношения в предыдущее уравнение потенциала дает:

.

Если при этом допустить, что и практически равны их общим концентрациям, можно вычислить потенциал в точке эквивалентности.

После первой точки эквивалентности раствор содержит значительные количества ионов Fe2+ и Fe3+, и значения потенциалов для построения кривой титрования следует вычислять по уравению:

.

Кривая титрования на втором участке практически идентична кривой титрования раствора ионов Fe2+ (см. рис.2).

Аналогично, при титровании раствора, содержащего ионы одного и того же элемента в разной степени окисления (VIV, VV, WV, WVI, MoIV, MoV, MoVI), можно получить кривую с двумя и более ступенями.

2.4 Определение точки эквивалентности

В окислительно-восстановительных методах титрования, так же как и в методах кислотно-основного взаимодействия, возможны различные способы индикации точки эквивалентности.

Безындикаторные методы применимы при использовании окрашенных титрантов (растворы KMnO4, I2), незначительный избыток которых придает раствору визуально фиксируемую окраску.

Индикаторные методы могут быть химическими, если при этом используют в качестве индикаторов химические соединения, резко изменяющие свою окраску вблизи точки эквивалентности (в пределах скачка на кривой титрования).

Иногда в окислительно-восстановительных методах титрования применяют кислотно-основные индикаторы: метиловый оранжевый, метиловый красный, конго красный и др. Эти индикаторы в конечной точке титрования необратимо окисляются избытком окислителя и при этом меняют свою окраску.

Возможно применение флуоресцентных и хемилюминесцентных индикаторов при титровании восстановителей сильными окислителями. К числу флуоресцентных индикаторов относят многие вещества (акридин, эухризин и др.), излучающие в видимой области при определенных значениях рН раствора после облучения их ультрафиолетовым излучением. Хемилюминесцентными индикаторами являются вещества (люминол, люцигенин, силоксен и др.), излучающие в видимой области спектра в конечной точке титрования вследствие экзотермических химических процессов. Хемилюминесценция наблюдается главным образом при реакциях окисления пероксидом водорода, гипохлоритами и некоторыми другими окислителями. Достоинством флуоресцентных и хемилюминесцентных индикаторов является то, что их можно применять для титрования не только прозрачных и бесцветных, но и мутных или окрашенных растворов, для титрования которых обычные редокс-индикаторы непригодны.

Индикаторные методы могут быть также физико-химическими: потенциометрические, амперометрические, кондуктометрические и др.

2.5 Окислительно-восстановительные индикаторы

Для определения точки эквивалентности в редоксиметрии используют различные индикаторы:

) Окислительно-восстановительные индикаторы (редокс-индикаторы), изменяющие цвет при изменении окислительно-восстановительного потенциала системы.

2) Специфические индикаторы, изменяющие свой цвет при появлении избытка титранта или исчезновении определяемого вещества. Специфические индикаторы применяют в некоторых случаях. Так крахмал - индикатор на присутствие свободного йода, вернее трииодид-ионов . В присутствии крахмал при комнатной температуре синеет. Появление синей окраски крахмала связано с адсорбцией на амилазе, входящей в состав крахмала.

Иногда в качестве индикатора используют тиоцианат аммония при титровании солей железа(III), катионы с ионами образуют соединение красного цвета. В точке эквивалентности все ионы восстанавливаются до и титруемый раствор из красного становится бесцветным.

При титровании раствором перманганата калия сам титрант играет роль индикатора. При малейшем избытке KMnO4 раствор окрашивается в розовый цвет.

Редокс-индикаторы делятся на: обратимые и необратимые.

Обратимые индикаторы - обратимо изменяют свой цвет при изменении потенциала системы. Необратимые индикаторы - подвергаются необратимому окислению или восстановлению, в результате чего цвет индикатора изменяется необратимо.

Редокс-индикаторы существуют в двух формах окисленной и восстановленной , причем цвет одной формы отличается от цвета другой.


Переход индикатора из одной формы в другую и изменение его окраски происходит при определенном потенциале системы (потенциале перехода). Потенциал индикатора определяется по уравнению Нернста:

При проведении окислительно-восстановительного титрования необходимо подбирать индикатор таким образом, чтобы потенциал индикатора находился в пределах скачка потенциала на кривой титрования. Многие индикаторы окислительно-восстановительного титрования обладают кислотными или основными свойствами и могут менять свое поведение в зависимости от рН среды.

Одним из наиболее известных и употребимых редокс-индикаторов является дифениламин :

Восстановленная форма индикатора бесцветная. Под действием окислителей дифениламин сначала необратимо переходит в бесцветный дифенилбензидин, который затем обратимо окисляется до сине-фиолетового дифенилбензидинфиолетового.

Двухцветным индикатором является ферроин, представляющий собой комплекс Fe2+ с о-фенантролином

Титрование индикаторным методом возможно, если для данной реакции ЭДС ≥ 0,4 В. При ЭДС = 0,4 - 0,2 В используют инструментальные индикаторы.

3. Классификация методов окислительно-восстановительного титрования

Согласно широко применяемой классификации, название окислительно-восстановительного метода титрования происходит от названия стандартного раствора (титранта). Стандартные растворы, применяемые в окислительно-восстановительных методах титрования, характеризуются широким интервалом значений окислительно-восстановительных потенциалов, следовательно, аналитические возможности этих методов велики. В случае, если титруемый раствор содержит только один компонент, обладающий достаточно высокой способностью к присоединению электронов, а титрант - единственный источник электронов (или наоборот) и при этом имеется надежный способ индикации конечной точки титрования, применим способ прямого титрования. Если эти условия не выполняются, используют косвенные способы титрования. Окислительно-восстановительная реакция между определяемым веществом и титрантом должна удовлетворять общим требованиям, предъявляемым к реакциям, используемым в титриметрии.

Если окислительно-восстановительная реакция протекает нестехеометрично или недостаточно быстро, применяют косвенные способы титрования: обратное титрование и титрование по замещению. Например, при цериметрическом определении Fe3+ используют способ титрования по замещению:

Fe3+ +Ti3+ = TiIV + Fe2+ + + CeIV = Fe3+ + Ce3+.3+ не мешает титрованию.

Окислительно-восстановительное титрование возможно, если в растворе присутствует одна подходящая степень окисления определяемого компонента. В противном случае до начала титрования необходимо провести предварительное восстановление (окисление) до подходящей степени окисления, как это делают, например, при анализе смеси Fe2+ и Fe3+ методом перманганатометрии. Предварительное восстановление (окисление) должно обеспечить количественный перевод определяемого элемента в нужную степень окисления.

Вводимый для этой цели реагент должен представлять собой такое соединение, от избытка которого перед началом титрования легко освободиться (кипячением, фильтрованием и др.). В некоторых случаях методом редоксиметрии определяют соединения, не изменяющие своей степени окисления.

Так, титрованием по замещению, определяют ионы кальция, цинка, никеля, кобальта и свинца в перманганатометрии, сильные кислоты - в иодометрии.

Табл.2. Методы окислительно-восстановительного титрования

Название метода

Стандартный раствор (титрант)

Уравнения полуреакций системы титранта

Особенности метода

Стандартный раствор - окислитель

Перманга-натометрия

MnO4−+ 8H+ + 5e̅ = Mn2++ 4H2O MnO4−+ 4H+ + 3e̅ = MnO2 + 2H2O MnO4−+ 2H2O + 3e̅ = MnO2+ 4OH−

Безындикаторный метод, используется в широкой области рН

Бромато-метрия

BrO3−+ 6H+ + 6e̅ = Br−+ 3H2O

Индикатор - мети-ловый оранжевый. Среда - сильнокис-лая

Цериметрия

Ce4+ + e̅ = Ce3+

Индикатор - ферроин. Среда - сильнокислая

Хромато-метрия

Сr2O72−+ 14H+ + 6e̅ = 2Cr3++2H2O

Индикатор - дифе-ниламин. Среда − сильнокислая

Нитрито-метрия

NO2- + 2H+ + e̅ = NO + H2O

Внешний индикатор - иодид- крахмаль-ная бумага. Среда − слабокислая

Иоди-метрия

I2 + 2e̅ = 2I -

Индикатор - крахмал

Стандартный раствор - восстановитель

Аскорбино-метрия

С6H6O6 +2H+ +2 e̅ = С6H8O6

Индикаторы - вари-аминовый синий или для определе-ния ионов Fe3+ роданид калия. Среда - кислая

Титано-метрия

TiO2+ + 2H+ + e̅ =Ti3+ + H2O

Индикатор - мети-леновый голубой. Среда - кислая

Иодометрия

S4O62−+ 2e̅ = 2S2O32−

Индикатор - крах-мал. Вспомогатель-ный реагент - KI. Среда - слабокислая или нейтральная


4. Перманганатометрия

Перманганатометрия - один из наиболее часто применяемых методов окислительно-восстановительного титрования. В качестве титранта используют раствор перманганата калия, окислительные свойства которого можно регулировать в зависимости от кислотности раствора.

4.1 Особенности метода

Наибольшее распространение в аналитической практике получил перманганатометрический метод определения в кислых средах: восстановление MnO4- до Mn2+ проходит быстро и стехеометрично:

,

Количественно восстановление перманганата в щелочной среде до манганата протекает в присутствии соли бария. Ba(MnO4)2 растворим в воде, в то время как ВаMnO4 - нерастворим, поэтому дальнейшее восстановление MnVI из осадка не происходит.

Перманганатометрически в щелочной среде, как правило, определяют органические соединения: формиат, формальдегид, муравьиную, коричную, винную, лимонную кислоты, гидразин, ацетон и др.

Индикатором конца титрования служит бледно-розовая окраска избытка титранта КMnO4 (одна капля 0,004 М раствора титранта придает заметную окраску 100 мл раствора). Поэтому, если титруемый раствор бесцветен, о достижении точки эквивалентности можно судить по появлению бледно-розовой окраски избытка титранта КMnO4 при титровании прямым способом или по исчезновению окраски при реверсивном титровании. При анализе окрашенных растворов рекомендуется использовать индикатор ферроин.

К достоинствам перманганатометрического метода относят:

1. Возможность титрования раствором КMnO4 в любой среде (кислой, нейтральной, щелочной).

2. Применимость раствора перманганата калия в кислой среде для определения многих веществ, которые не взаимодействуют с более слабыми окислителями.

Стехеометричность большинства окислительно-восстановительных реакций с участием MnO4- − при оптимально выбранных условиях с достаточной скоростью.

Возможность титрования без индикатора.

Доступность перманганата калия.

Наряду с перечисленными достоинствами метод перманганатометрии имеет ряд недостатков:

1. Титрант КMnO4 готовят как вторичный стандарт, поскольку исходный реагент - перманганат калия - трудно получить в химически чистом состоянии.

2. Реакции с участием MnO4- возможны в строго определенных условиях (рН, температура и т. д.).

4.2 Применение метода

Определение восстановителей. Если окислительно-восстановительная реакция между определяемым восстановителем и MnO4- протекает быстро, то титрование проводят прямым способом. Так определяют оксалаты, нитриты, пероксид водорода, железо (II), ферроцианиды, мышьяковистую кислоту и др.:

Н2О2 + 2MnO4- + 6Н+ = 5О2 + 2Мn2+ + 8Н2О

54- + MnO4- + 8H+ = 53- + 2Mn2+ + 4H2O

AsIII + 2MnO4- + 16H+ = 5AsV + 2 Mn2+ + 8H2O

5Fe2+ + MnO4- +8H+ = 5Fe3+ + 2Мn2+ + 4Н2О

Для прямого перманганатометрического определения ионов Fe3+ необходимо их предварительно количественно восстановить до Fe2+, используя один из восстановителей: SnCl2, Zn, N2H4.

При анализе растворов, содержащих железо (II) и железо (III) в отдельной пробе исходного раствора смеси ионов прямым титрованием раствором KMnO4 определяют содержание Fe2+. Параллельно в такой же пробе анализируемой смеси восстанавливают Fe3+ до Fe2+ и титруют раствором KMnO4 суммарное количество ионов Fe2+. Из результатов определения общего содержания железа, полученных титрованием восстановленного раствора, вычитают результат определения содержания Fe2+ до восстановления и вычисляют содержание в анализируемой смеси ионов Fe3+.

При перманганатометрическом определении нитритов изменяют порядок титрования на обратный (реверсивное титрование): стандартный раствор перманганата титруют анализируемым раствором нитрита. Это обусловлено тем, что нитриты разлагаются в кислой среде с образованием оксидов азота. Реакцию окисления нитрита раствором KMnO4 можно записать:

NO2- + 2MnO4- + 6H+ = 5NO3- + 2Мn2+ + 3Н2О

В случае замедленных реакций определение проводят способом обратного титрования избытка перманганата. Так определяют муравьиную, поли- и оксикарбоновые кислоты, альдегиды и другие органические соединения:

HCOO- + 2MnO4- + 3OH- = CO32- + 2MnO42- + 2H2O + (MnO4-)

избыток остаток

MnO4- + 5С2O42- + 16H+ = 2Mn2+ +10CO2 + 8H2O

остаток

Определение окислителей. Добавляют избыток стандартного раствора восстановителя и затем титруют его остаток раствором KMnO4 (способ обратного титрования). Например, хроматы, персульфаты, хлориты, хлораты и другие окислители можно определять перманганатометрическим методом, подействовав сначала избытком стандартного раствора Fe2+, а затем оттитровав непрореагировавшее количество Fe2+ раствором KMnO4:

Cr2O72- + 6Fe2+ + 14H+ = 2Cr3+ + 6Fe3+ + 7H2O + (Fe2+)

избыток остаток

Fe2+ + MnO4- + 8H+ = 5Fe3+ + Mn2+ + 4H2O

остаток

Определение веществ, не обладающих окислительно-восстановительными свойствами, проводят косвенным способом, например титрованием по замещению. Для этого определяемый компонент переводят в форму соединения, обладающего восстановительными или окислительными свойствами, а затем проводят титрование. Например, ионы кальция, цинка, кадмия, никеля, кобальта, осаждают в виде малорастворимых оксалатов:

М2+ + С2О4- = ↓МС2О4

Осадок отделяют от раствора, промывают и растворяют в H2SO4:

МС2О4 + H2SO4 = H2C2O4 + MSO4

Затем H2C2O4 (заместитель) титруют раствором KMnO4:

2MnO4- + 5С2O42- + 16H+ = 2Mn2+ +10CO2 + 8H2O

4.Определение органических соединений. Отличительной особенностью реакций органических соединений с MnO4- является их малая скорость. Определение возможно, если использовать косвенный способ: анализируемое соединение предварительно обрабатывают избытком сильнощелочного раствора перманганта и дают возможность реакции протекать необходимый период времени. Остаток перманганата титруют раствором оксалата натрия:

С3Н5(ОН)3 + 14MnO4- + 20OH- = 3CO32- + 14MnO42- + 14H2O + (MnO4-), избыток остаток

2MnO4- + 5С2O42- + 16H+ = 2Mn2+ +10CO2 + 8H2O

остаток

Табл.3. Примеры определения некоторых неорганических и органических соединений перманганатометрическим методом

Определяемое соединение (ион)

Реакции, используемые в ходе анализа

Условия анализа

5SbIII + 2MnO4- + 16H+ = 5SbV +2Mn2+ + 8H2O

Прямое титрование. Среда − 2М HCl

5Sn2+ + 2MnO4- + 16H+ = 5Sn4+ + 2Mn2+ + 8H2O

Среда − 1M H2SO4 Исключить доступ О2

5Ti3+ + MnO4- + 8H+ = 5Ti4+ + Mn2+ + 4H2O

Среда - 1М H2SO4

5W3+ + 3MnO4- + 24H+ = 5W6+ + 3Mn2+ + 12H2O

Среда - 1М H2SO4

5U4+ + 2MnO4- + 16H+ = 5U6+ + 2Mn2+ + 8H2O

Среда - 1М H2SO4

5V4+ + MnO4- + 8H+ = 5V5+ + Mn2+ + 4H2O

Среда - 1М H2SO4

10Br− + 2MnO4- + 16H+ = 2Mn2+ + 8H2O + 5Br2

Титрование в 2М растворе H2SO4 при кипячении для удаления Br2

СН3ОН + 6MnO4-изб. + 8OH- = CO32- + 6MnO42- + 6H2O + (MnO4-)ост. HCOO- + 2(MnO4-)ост. + 3Ва+ + 3OH- = ВаCO3 + ↓2ВаMnO4 + 2H2O

Обратное титрование Остаток непрореагировавшего MnO4- после добавления соли бария титруют раствором формиата натрия

Ca2+, Mg2+, Zn2+, Co2+, La3+, Th4+, Ba2+, Sr2+, Pb2+, Ag+

М2+ + С2О4- = ↓МС2О4 + (С2О4-)ост. 2MnO4- + 5(С2O42-)ост. + 16H+ = 2Mn2+ +10CO2 + 8H2O М2+ + С2О4- = ↓МС2О4 МС2О4 + H+ = H2C2O4 + M2+ 2MnO4- + 5С2O42- + 16H+ = 2Mn2+ +10CO2 + 8H2O

Осадок МС2О4 отделяют и отбрасывают, фильтрат и промывные воды титруют при 2М H2SO4. Титрование по замещению Осадок МС2О4 отделяют, промывают, растворяют в 2М H2SO4 и титруют, как указано выше


4.3 Приготовление 0,05н раствора перманганата калия и его стандартизация по щавелевой кислоте или оксалату аммония (натрия)

Титрованный раствор перманганата калия по точной навеске кристаллического приготовить нельзя, так как в нем всегда содержится некоторое количество и других продуктов разложения. Поэтому раствор перманганата калия относится к вторичным стандартным растворам. Первоначально готовят раствор , концентрация которого приблизительно равна необходимой концентрации. Навеску берут на технохимических весах несколько больше расчетной величины. Так как является сильным окислителем и изменяет свою концентрацию в присутствии различных восстановителей, то приготовленный раствор перманганата калия выдерживают 7-10 дней в темном месте для того, чтобы прошли все окислительно-восстановительные процессы с примесями, содержащимися в воде. Затем раствор фильтруют. Только после этого концентрация раствора становится постоянной и его можно стандартизировать по щавелевой кислоте или по оксалату аммония. Растворы следует хранить в бутылях из темного стекла. Приготовленный таким способом раствор перманганата калия с молярной концентрацией эквивалента 0,05 моль/л и выше не изменяет свой титр довольно продолжительное время.

Способ стандартизации основан на окислении щавелевой кислоты перманганат-ионами в кислой среде:

При этом полуреакции окисления и восстановления имеют вид:

При комнатной температуре эта реакция протекает медленно. И даже при повышенной температуре скорость ее невелика, если она не катализирована ионами марганца(II). Нагревать кислоту выше 70-80 0С нельзя, так как при этом часть кислоты окисляется кислородом воздуха:


Реакция взаимодействия перманганата калия со щавелевой кислотой относится к автокаталитическим реакциям. Реакция окисления щавелевой кислоты протекает в несколько стадий. Первые капли перманганата калия даже в горячем растворе обесцвечиваются очень медленно. Для ее начала необходимо присутствие в растворе хотя бы следов :

Образовавшийся манганат-ион в кислом растворе быстро диспропорционирует:

Марганец (III) образует оксалатные комплексы состава эти комплексы медленно разлагаются с образованием

Таким образом, пока в растворе не накопится в достаточных концентрациях марганец (II), реакция между протекает медленно. Когда концентрация марганца(II) достигает определенной величины, реакция начинает протекать с большой скоростью.

Интенсивная окраска раствора перманганата калия осложняет измерение объемов титранта в бюретке. На практике удобно за уровень отсчета принимать поверхность жидкости, а не нижнюю часть мениска.

Оксалат аммония обладает некоторыми преимуществами по сравнению с другими установочными веществами:

хорошо кристаллизуется и легко растворяется в воде,

имеет определенный химический состав и не изменяется при хранении,

не взаимодействует с кислородом воздуха и СО2 .

Для установки концентрации (титра или молярной концентрации эквивалентов) стандартного раствора перманганата калия рассчитывают навеску щавелевой кислоты или оксалата аммония , необходимую для приготовления раствора с молярной концентрацией эквивалента 0,05 н:

ЭNa2C2O4 = М/2 = 134,02/2 = 67,01 г;

ЭН2С2О4∙2Н2О = М/2 = 126,06/2 = 63.03 г;

ЭKMnO4 = М/5 = 158,03/5 = 31,61 г.

Зная массу 1 моль - эквивалента оксалата натрия, вычисляют навеску этой соли, которую необходимо взять, чтобы приготовить раствор для определения нормальности раствора перманганата. При этом растворы оксалата натрия и перманганата должны иметь примерно одинаковую нормальность.

Для приготовления 100 мл 0,05н раствора Na2C2O4 нужно взять: 0,05∙67,01∙0,1 = 0,3351 г Na2C2O4. Не следует стремиться брать именно такое количество соли, чтобы получить точно 0,05н. раствор. Нужно сначала на технических весах взять близкую к рассчитанной навеску, например 0,34 г, а затем точно взвесить ее на аналитических весах (это значительно ускоряет и упрощает работу). Пусть взятая навеска равна 0,3445 г. Перенести ее в мерную колбу (избегать потерь), растворить в дистиллированной воде, разбавить раствор до метки и затем, закрыв колбу пробкой, хорошо перемешать. Нормальность приготовленного раствора Na2C2O4 устанавливается из соотношения:

3351 г Na2C2O4 - 0,05н

3445 г Na2C2O4 - х

х = 0,0514н

Рассчитанное количество кислоты (или соли) взвешивают на аналитических весах. Взвешенную массу кислоты (или соли) растворяют в воде в мерной колбе, раствор тщательно перемешивают. Затем титруют раствор . Расчет концентрации перманганата калия во всех случаях проводят на основании закона эквивалентов:

Например, при титровании 0,0514н раствора H2C2O4 (Vал = 10,0 мл) раствором KMnO4 были получены следующие результаты:

V1(KMnO4) = 11,0 мл

V2(KMnO4) = 10,9 мл

V3(KMnO4) = 11,0 мл

Тогда нормальность раствора перманганата калия будет равна:

.

4.4 Титрование анализируемого раствора

Для примера рассмотрим применение метода перманганатометрии для определения содержания железа в соли Мора. Соль Мора является двойной солью сульфатов железа (II) и аммония FeSO4∙(NH4)2SO4∙6H2O. Так как сульфат аммония не участвует в реакции с перманганатом, то уравнение реакции взаимодействия можно написать только с FeSO4:

10FeSO4+2KMnO4+8H2SO4 = 5Fe2(SO4)3+K2SO4+2MnSO4+8H2O.

Согласно этому уравнению:

Э FeSO4 = М/1 = 151,92

Э FeSO4∙(NH4)2SO4∙6H2O = М/1 = 392,15.

Титровать железо(II) перманганатом калия можно в сернокислой или солянокислой средах. В первом случае не наблюдается никаких осложнений. Присутствие в титруемом растворе хлорид-ионов приводит к перерасходу перманганата и получению нечеткого конца титрования. Это вызвано тем, что реакция между железом(II) и перманганатом индуцирует реакцию между ионами

Причем в отсутствие ионов эта реакция не идет. Реакции подобного типа, не идущие одна без другой, назваются сопряженными или индуцированными. Индуцированной реакции не возникает, если в растворе присутствуют в достаточных количествах фосфорная кислота и марганец (II). Поэтому перед титрованием в раствор добавляют смесь Рейнгарда-Циммермана, состоящую из серной, фосфорной кислот и сульфата марганца(II). Присутствие в этой смеси создает требуемую концентрацию протонов в титруемом растворе. Присутствие необходимо для связывания железа (III) в бесцветный комплекс и образования фосфатных комплексов марганца (III). Если железо не маскировать, то окраска его комплексных хлоридов будет затруднять наблюдение бледно-розовой окраски в конце титрования перманганатом калия.

Нормальность раствора сульфата железа (II) определяется по уравнению:

С(KMnO4) ∙V(KMnO4) = С(FeSO4) ∙V(FeSO4)

Так как масса 1 моль эквивалента железа равна 55,85 г, то масса железа, содержащегося в 100 мл раствора, равна

Если исходная навеска равна а г (в 100 мл раствора), то содержание железа в соли Мора составит:

Теоретически вычисленное содержание железа в соли Мора

Заключение

Из титриметрических методов анализа окислительно-восстановительное титрование является широко распространенным, границы применения этого метода шире, чем кислотно-основного или комплексонометрического методов. Благодаря большому разнообразию окислительно-восстановительных реакций этот метод позволяет определять большое количество самых разнообразных веществ, в том числе и тех, которые непосредственно не проявляют окислительно-восстановительных свойств.

Перманганатометрия используется для определения общей окисляемости воды и почвы. При этом с MnO4--ионом в кислой среде реагируют все органические компоненты (в том числе гуминовые кислоты почв и природных вод). Число миллимоль эквивалентов KMnO4, пошедших на титрование, и является характеристикой окисляемости (по перманганату).

Перманганатометрию применяют и для анализа легко окисляющихся органических соединений (альдегидов, кетонов, спиртов, карбоновых кислот: щавелевой, винной, лимонной, яблочной, а также гидразогрупп). В пищевой промышленности перманганатометрию можно использовать для определения содержания сахара в пищевых продуктах и сырье, содержания нитритов в колбасных изделиях.

В металлургической промышленности методом перманганатометрии определяют содержание железа в солях, сплавах, металлах, рудах и силикатах.

Список литературы

1. Аналитическая химия. Химические методы анализа/ под ред. О.М. Петрухина. М.: Химия, 1992, 400 с.

2. Васильев В.П. Аналитическая химия. В 2 ч. Ч. 1. Гравиметрический и титриметрический методы анализа. М.: Высшая школа, 1989, 320 с.

Основы аналитической химии. В 2 кн. Кн. 2. Методы химического анализа/ под ред. Ю.А. Золотова. М.: Высшая школа, 2000, 494 с.

Данный метод титриметрического анализа основан на окислительно-восстановительных реакциях между титрантом и анализируемым веществом. Реакции окисления-восстановления связаны с переносом электронов. Вещества, отдающее электроны, в этих реакциях является восстановителем (Red), а приобретающее электроны – окислителем (Ох):

Red 1 + Ox 2 = Ox 1 + Red 2 .

Восстановленная форма одного вещества (Red 1), отдавая электроны, переходит в окисленную форму (Ox 1) того же вещества. Образуется сопряженная окислительно-восстановительная пара Ox 1 /Red 1 (редокс-пара). Окисленная форма другого вещества (Ox 2), принимая электроны, переходит в восстановленную форму (Red 2) того же вещества. Образуется другая окислительно-восстановительная пара Ox 2 /Red 2 . Таким образом, в окислительно-восстановительной реакции участвует не менее двух окислительно-восстановительных пар. Мерой окислительно-восстановительных свойств веществ является окислительно-восстановительный потенциал Е 0 . Сравнивая стандартные потенциалы ОВ-пар, участвующих в ОВР, можно заранее определить направление самопроизвольного протекания реакции. Окислительно-восстановительная реакция самопроизвольно протекает в направлении превращения сильного окислителя в слабый восстановитель, сильного восстановителя в слабый окислитель.

Чем больше стандартный потенциал окислительно-восстановительной пары, тем более сильным окислителем является её окисленная форма и тем более слабым восстановителем – восстановленная форма. Чем меньше стандартный потенциал ОВ-пары, тем более сильным восстановителем является восстановленная форма, тем более слабым окислителем – окисленная форма. Поэтому в окислительно-восстановительном титровании (редоксиметрии) в качестве титрантов при определении восстановителей применяют такие окислители (Ох 2), стандартные ОВ-потенциалы окислительно-восстановительных пар которых имеют как можно более высокие значения, тем самым с их помощью можно оттитровать большее число восстановителей (Red 1). Например, Е 0 (MnO 4 - , H + , Mn 2+) = +1,51В, Е 0 (Cr 2 O 7 2- , H + , Cr 3+) = +1,33В и др.

При определении окислителей (Ох 2) в качестве титрантов применяют восстановители (Red 1), стандартный ОВ-потенциал редокс-пар которых имеет по возможности минимальное значение. Например, Е 0 (I 2 / 2I -) = +0,536В, Е 0 (S 4 O 6 2- / 2S 2 O 3 2-) = +0,09В и др.

Для установления точки эквивалентности в редоксиметрии используют редокс-индикаторы (окислительно-восстановительные индикаторы), представляющие собой вещества, способные обратимо окисляться и восстанавливаться, причем окисленная и восстановленная формы их имеют различную окраску. Примером такого индикатора является дифениламин. Часто в редоксиметрии применяется так называемое безиндикаторное титрование , например, в перманганатометрии роль индикатора выполняет титрант – перманганат калия. Количественные расчеты в ОВ титровании, как и в других методах титриметрического анализа, основаны на законе эквивалентов.


Молярная масса эквивалента окислителя:

(39)

Молярная масса эквивалента восстановителя:

(40)

Одним из методов окислительно-восстановительного титрованияявляется перманганатометрическое титрование. Это метод анализа, в котором в качестве титранта-окислителя используют раствор перманганата калия KMnO 4 . Анион MnO 4 - проявляет окислительные свойства в кислой, нейтральной и щелочной средах, восстанавливаясь соответственно до катиона Mn 2+ (бесцветные ионы), оксида марганца (IV) MnO 2 (бурый осадок) и аниона MnO 4 2- (зеленый раствор, буреющий на воздухе).

Уравнения полуреакций:

Кислая среда

MnO 4 - + 8H + + 5e - → Mn 2+ + 4H 2 O

E 0 (MnO 4 - , H + ,Mn 2+) = +1,51В

Нейтральная среда

MnO 4 - + 2H 2 O + 3e - → MnO 2 ↓ + 4OH -

E 0 (MnO 4 - /MnO 2) = + 0,60В

Щелочная среда

MnO 4 - + e - → MnO 4 2-

E 0 (MnO 4 - /MnO 4 2-) = + 0,56В

В перманганатометрии титрование проводят в кислой среде, так как:

1) наиболее сильными окислительными свойствами перманганат-ион MnO 4 - обладает в кислой среде по сравнению с нейтральной и щелочной, о чем свидетельствуют значения стандартных ОВ-потенциалов (+1,51В против +0,60В и +0,56В);

2) определению конечной точки титрования в нейтральной среде будет мешать бурый осадок MnO 2 ; в щелочной среде образующиеся манганат-ионы MnO 4 2- , имеющие зеленую окраску, также затрудняют фиксацию конечной точки титрования. Образующиеся же в кислой среде катионы Mn 2+ бесцветны;

3) при титровании в кислой среде создается возможность четко фиксировать конечную точку титрования без применения постороннего индикатора, так как одна лишняя капля перманганата калия окрашивает бесцветный раствор в бледно-розовый цвет.

Титрант : раствор перманганата калия (в кислой среде).

Индикатор : перманганат калия.

Определяемые вещества : ионы Fe 2+ , Cr 3+ , NO 2 - , перекись водорода Н 2 О 2 , этиловый спирт, в биологических исследованиях мочевая кислота, глюкоза, содержание некоторых витаминов, активность фермента каталазы, окисляемость бытовых и сточных вод, органические загрязнения в атмосфере.

Одним из недостатков перманганатометрии является необходимость стандартизации раствора перманганата калия, так как его титрованный раствор нельзя приготовить по точной навеске. Кроме того, концентрация перманганата калия, переведенного в раствор, заметно уменьшается. Поэтому точную концентрацию раствора КMnO 4 устанавливают не ранее чем через 5 – 7 дней после его приготовления. Для стандартизации используют щавелевую кислоту или её соли (оксалаты натрия или аммония).

Стандартные вещества : Н 2 С 2 О 4 ·2Н 2 О, Na 2 C 2 O 4 , (NH 4) 2 C 2 O 4 ∙H 2 O.

Уравнение реакции, протекающей при стандартизации раствора KMnO 4 по щавелевой кислоте:

Н 2 С 2 О 4 + КMnO 4 + H 2 SO 4 → CO 2 + Mn 2+ + …

C 2 O 4 2- – 2e - → 2CO 2 5

MnO 4 - + 8H + + 5e - → Mn 2+ + 4H 2 O 2

МОДУЛЬ № 2
КОЛИЧЕСТВЕННЫЙ АНАЛИЗ

окислительно-восстановительное титрование.

нитритометрическое И Цериметрическое ТИТРОВАНИЕ

Лекция № 10

1. Цель: Дать сущность методов нитрито - и цериметрического титрования, охарактеризовать титранты и их применение в фармацевтическом анализе.

Методы, используемые на лекции:

1. По дидактическому назначению : лекция вводная, тематическая, объяснительная.

2. По роли в образовательном процессе : лекция вводная, установочная, обзорная, обобщающая.

4. По назначению лекция направлена на приобретение студентами знаний, на развитие творческой деятельности, а также на закрепление учебного материала. По типу познавательной деятельности на лекции применяются репродуктивные и проблемные методы изложения материала, используются наглядные методы обучения в виде презентации по данному разделу

Средства обучения

1. Дидактические : презентация.

2. Материально технические : мел, доска, мультимедийный проектор, экран.

Хронокарта лекции:

1. Организационный момент 3 мин (название темы и плана лекции).

2. Традиционное прочитывание лекции 40 мин - I час лекции.

3. Перерыв 5мин.

4. Второй час лекции 40 мин.

5. Заключительная часть лекции - выборочная проверка студентов на лекции 21ф, 22ф группы 5 мин.

План лекции

1. Нитритометрическое титрование.

1.1. Сущность метода.

1.2. Титрант метода, его приготовление и стандартизация .

1.3. Индикаторы метода (внешние, внутренние).


1.4. Применение нитритометрии.

2. Цериметрическое титрование. Сущность метода.

2.1. Титрант метода, его приготовление и стандартизация.

2.2. Применение цериметрии.

ТЕКСТ ЛЕКЦИи

1. Нитритометрическое титрование.

Нитритометрия, или нитритометрическое титрование , ‒ метод количественного определения веществ с использованием титранта ‒ раствора нитрита натрия NaNО2. Метод ‒ фармакопейный, широко применяется в анализе различных веществ, в том числе многих фармацевтических препаратов.

1.1. Сущность метода . Метод основан на использовании полуреакции, протекающей в кислой среде:

NO2- + + 2Н+ = NO + H2O


Стандартный ОВ потенциал редокс-пары NО2|NО при комнатной температуре равен 0,98 В. Реальный ОВ потенциал этой редокс-пары увеличивается с ростом концентрации ионов водорода

Е = 0,98 + lg(·2/)

поэтому с повышением кислотности среды окислительные свойства нитрит-иона возрастают. Нитритометрическое титрование ведут в кислой среде.

Поскольку в указанной ОВ полуреакции участвует один электрон, то фактор эквивалентности нитрита натрия равен единице; молярная масса эквивалента равна молярной массе; молярная концентрация эквивалента равна молярной концентрации нитрита натрия.

1.2. Титрант метода, его приготовление и стандартизация. В качестве титранта используют обычно водный раствор нитрита натрия NaNО2, чаще всего ‒ с молярной концентрацией 0,5 или 0,1 моль/л. Раствор вначале готовят с приблизительно требуемой концентрацией, а затем стандартизуют ‒ в большинстве случаев по стандартному раствору сульфаниловой кислоты NH2C6H4SО3H или пер­манганата калия.

Иногда для стандартизации растворов нитрита натрия применяют п - аминобензойную кислоту, п -аминоэтилбензоат, гидразин-сульфат, сульфаниловую кислоту.

Для приготовления 0,1 моль/л раствора титранта растворяют 7,3 г нитрита натрия в воде в мерной колбе на 1 л и доводят водой объем раствора до метки. Затем раствор стандартизуют или по сульфаниловой кислоте, или по стрептоциду, или по перманганату калия.

Стандартизация по сульфаниловой кислоте . Стандартный раствор сульфаниловой кислоты готовят, растворяя точную навеску ее в воде в присутствии гидрокарбоната натрия NаНСО3, с тем чтобы образовалась водорастворимая смесь.

Для приготовления раствора 0,2 г (точная навеска) сульфаниловой кислоты, которую предварительно дважды перекристаллизовывают из воды и высушивают при 120 °С до постоянной массы, смешивают с 0,1 г NaHCO3, 10 мл воды и затем прибавляют к смеси еще 60 мл воды, 10 мл разбавленной HCl, 1 г КВr (для ускорения реакции) и титруют стандартизуемым раствором нитрита натрия.

Реакция сульфаниловой кислоты с нитритом натрия в соляно-кислой среде с образованием соли диазония протекает медленно, поэтому раствор нитрита натрия прибавляют при интенсивном перемешивании в начале титрования со скоростью ~ 2 мл в минуту, а в конце титрования (когда остается прибавить ~ 0,5 мл раствора) ‒ со скоростью 0,05 мл в минуту.

Конец титрования определяют либо потенциометрически, либо ви­зуально индикаторным методом в присутствии индикатора ‒ смеси тро - пеолина 00 с метиленовым синим или нейтрального красного.


Стандартизованный раствор нитрита натрия хранят в темном месте в сосудах из темного стекла с притертыми пробками.

Аналогично готовят, стандартизуют и хранят 0,05 моль/л раствор нитрита натрия.

Стандартизация по перманганату калия. Проводится методом об­ратного перманганатометрического титрования с иодометрическим окончанием.

К точно известному объему стандартного раствора перманганата ка­лия, взятого в избытке по сравнению со стехиометрическим количеством, прибавляют серную кислоту, раствор нагревают до ‒ 40°С для ускорения протекания реакции, после этого добавляют точно измеренный объем стандартизуемого раствора нитрита натрия и оставляют смесь на 15‒20 минут. При этом протекает реакция

5NO2- + 2MnO4- + 6Н+ = 5NO3- + 2Мn2+ + 3Н2O

Затем к раствору добавляют избыток 10%-ного раствора иодида ка­лия, накрывают колбу стеклом и оставляют смесь на ‒ 5 минут в темном месте. Иодид калия взаимодействует с непрореагировавшим остатком перманганата калия с образованием иода:

2МnО4- + 10I- + 16H+ = 2Мn2+ + 5I2 + 8Н2O

Образовавшуюся смесь разбавляют небольшим количеством воды и оттитровывают выделившийся иод стандартным 0,05 моль/л раствором тиосульфата натрия до слабо-желтой окраски раствора (цвет остаточного недотитрованного иода), после чего прибавляют небольшое количество 1-2%-ного раствора крахмала ‒ раствор окрашивается в синий цвет. Продолжают титрование до резкого перехода окраски раствора из синей в бесцветную.

Расчет результатов титрования проводят обычным способом, исходя из закона эквивалентов:

n(1/5 КМnO4) = n(1/2 NaNO2) + n(1/2 I2),

n(1/2 I2) = n(Na2S2O3),

n(1/2 NaNO2) = n(1/5 КМnO4) ‒ n(Na2S2O3),

c (1/2 NaNO2)·V (NaNO2) = c (1/5 КМnO4)·V (KMnO4) ‒ c (Na2S2O3)·V (Na2S2O3), c (1/2 NaNO2) = [c (1/5 КМnO4)·V (KMnO4) ‒ c (Na2S2O3)V (Na2S2O3)]/V (NaNO2).

Нитрит-ион неустойчив в кислой среде и разлагается с образованием газообразных оксидов азота :

NO2- + H+ = HNO2

2 HNO2 = NO + NO2 + Н2O

Поэтому при проведении нитритометрического титрования раствор нитрита натрия прибавляют к кислому титруемому раствору; сам же рас­твор нитрита натрия перед титрованием не подкисляют.

Водные растворы нитрита натрия умеренной концентрации относи­тельно устойчивы. В сильно разбавленных растворах происходит окисле­ние нитрит-иона до нитрат-иона.

Определение конца титрования. Окончание титрования в нитри­тометрии чаще всего фиксируют электрометрически, проводя потенцио­метрическое титрование.

1.3. Индикаторы метода (внешние, внутренние). При визуальной индикаторной фиксации КТТ в нитритометрии применяют две группы индикаторов: внутренние и внешние.

В качестве внутренних используют редокс-индикаторы, такие, как тропеолин 00 (в КТТ окраска из красной переходит в желтую), его смесь с метиленовым синим (окраска из малиновой переходит в синюю), нейтральный красный (окраска из красно-фиолетовой переходит в синюю), а также сафранин Ж, метаниловый желтый, кислотный синий 2К.

В качестве внешних индикаторов обычно применяют иодидкрахмальную бумагу, которая представляет собой фильтровальную бумагу, пропитанную раствором крахмала и иодида калия и затем высушенную.

Контроль за ходом титрования ведут, периодически отбирая каплю титруемого раствора и нанося его на иодидкрахмальную бумагу. До достижения ТЭ в титруемом растворе нет окислителя - нитрит-ионов, поэтому при нанесении капли такого раствора на иодидкрахмальную бума­гу иодид-ионы не окисляются, иод не образуется и бумага не синеет. После достижения ТЭ прибавление уже одной капли избыточного титранта приводит к появлению в растворе нитрит-ионов, поэтому при нанесении капли такого раствора на иодидкрахмальную бумагу иодид-ионы окисляются нитрит-ионами до иода:

2I- + 2NO2- + 4Н+ = I2 + 2NO + 2H2O

Образующийся иод в присутствии крахмала окрашивает бумагу в синий цвет. Титрование прекращают тогда, когда капля титруемого рас­твора, отобранная через примерно одну минуту после прибавления титранта к титруемому раствору, сразу же окрашивает бумагу в синий цвет.

Параллельно проводят контрольный опыт для определения избыточ­ного расхода титранта.

1.4. Применение нитритометрии. Нитритометрическое титрование применяется для определения как неорганических веществ ‒ олова(II), мышьяка (III), железа (II), гидразина и его производных, так и ‒ особенно ‒ в количественном анализе органических соединений, содержащих первичную или вторичную ароматическую аминогруппу, ароматических нитропроизводных (после предварительного восстановления нитрогруппы до аминогруппы), гидразидов, включая определение таких широко используемых фармацевтических препаратов, как анестезин, дикаин, левомицетин, наганин, новокаин, новокаинамид, норсульфазол, парацетамол, стрептоцид, сульгин, сульфадимезин, сульфацил-натрий, уротропин, этазол и др.

Так, нитритометрическое определение железа (II) основано на реакции

Fe2+ + NO2- + 2Н+ = Fe3+ + NO + Н2O

Титрование ведут в присутствии комплексона ЭДТА, который свя­зывает образующееся железо (III) в устойчивый комплексонат, смещая равновесие вправо и тем самым увеличивая полноту протекания реакции.

Чаще всего методом нитритометрического титрования определяют ароматические аминосоединения, которые при взаимодействии с нитритом натрия в соляно-кислой или серно-кислой среде в присутствии бромид-ионов (ускоряют реакцию) образуют соли диазония:

R-NH2 + NO2- + 2Н+ = + + 2Н2О

где R ‒ ароматический радикал.

Окончание титрования часто фиксируют потенциометрическим методом; однако можно использовать и визуальную индикаторную фиксацию КТТ в присутствии как внешнего индикатора (иодидкрахмальная бумага), так и внутренних индикаторов.

Типичная методика определения заключается в следующем. Образец анализируемого препарата массой около 0,001 моль (точная навеска) растворяют в смеси 10 мл воды и 10 мл разбавленной хлороводородной кислоты. Раствор доводят водой до объема 80 мл, прибавляют 1 г кристаллического бромида калия, смесь перемешивают и титруют стандартным

0,1 моль/л раствором нитрита натрия при непрерывном перемешивании титруемого раствора. Как и при стандартизации самого титранта (см. выше), раствор нитрита натрия в начале титрования прибавляют со скоростью 2 мл в минуту, а в конце титрования (когда до достижения ТЭ остается прибавить около 0,5 мл титранта) ‒ со скоростью 0,05 мл в минуту.

Температуру титруемого раствора поддерживают около 15‒20 °С; иногда раствор охлаждают до 0‒5 °С, чтобы избежать разложение солей диазония, при котором образуются продукты, реагирующие с HNО2.

Окончание титрования можно определять, как указывалось выше, также и потенциометрически.

При нитритометрическом определении ароматических нитросоединений нитрогруппу восстанавливают до аминогруппы, например, металлическим цинком (цинковой пылью) в кислой среде, после чего титруют стандартным раствором нитрита натрия.

Так определяют левомицетин

O2N-С6Н4-СН(ОН)-CH(NHCOCHCl2)-СН2ОН

после предварительного гидрирования нитрогруппы в молекуле до аминогруппы

https://pandia.ru/text/80/286/images/image002_33.gif" width="596" height="155">

Вторичные ароматические амины RNHR" при реакции с нитритом натрия в соляно-кислой среде образуют нитрозоамины по схеме

RNHR" + NaNO2 + HCl = RN(NO)R" + NaCl + H2O

Например, тетракаин, как и другие вторичные амины, образует N -нитрозосоединение:

0 " style="margin-left:76.3pt;border-collapse:collapse;border:none">

раствор кислоты

Цериметрическое титрование проводят в кислой среде.

В вышеприведенной ОВ полуреакции участвует один электрон, по­этому фактор эквивалентности церия (IV) равен единице.

2.1. Титрант метода, его приготовление и стандартизация.

Титрант метода. В качестве титранта метода применяют обычно сернокислые растворы сульфата церия (IV) Ce(SO4)2, чаще всего с моляр­ной концентрацией 0,01 или 0,1 моль/л.

В кислых растворах церия (IV) присутствуют различные комплексы, состав которых точно не известен.

Сернокислые растворы сульфата церия (IV) при pH < 1 устойчивы даже при нагревании до 100 °С и способны длительное время сохранять свой титр. В менее кислых растворах церий (IV) реагирует с водой с обра­зованием малорастворимых основных солей. Солянокислые и азотно-кислые растворы церия (IV) менее стабильны; они разлагают воду. При хра­нении их титр по церию (IV) постепенно уменьшается (на 0,3‒1% в ме­сяц в обычных условиях).

Растворы титранта обычно вначале готовят с приблизительной кон­центрацией, а затем стандартизуют.

Для приготовления растворов, содержащих церий (IV), можно ис­пользовать такие соединения, как Ce(SО4)2·4Н2O, (NH4)4∙2Н2O, Се(ОН)4. Обычно растворы титранта готовят с использованием тетрагидрата сульфата церия (IV) или дигидрата тетрасульфатоцериата (IV) аммония .

Для приготовления сернокислого 0,1 моль/л раствора сульфата церия поступают следующим образом по одному из двух способов.

По первому способу смешивают 500 мл воды и 28 мл концентриро­ванной серной кислоты, к полученному раствору прибавляют 40,4 г тет­рагидрата сульфата церия Ce(SO4)2 ∙ 4Н2O. Раствор охлаждают и доводят его объем водой до 1000 мл.

По второму способу растворяют 65 г (NH4)4 ∙ 2Н2О в моль/л (молярная концентрация эквивалента) серной кислоте и доводят объем раствора водой до 1000 мл.

Значение pH полученного сернокислого раствора церия (IV) должно быть pH 1, что регулируется количеством прибавленной серной кислоты.

Стандартизацию сернокислого раствора церия (IV) проводят иодо - метрически. Для этого к 25 мл раствора, полученного, как описано выше, прибавляют 20 мл разбавленной серной кислоты, 20 мл воды и 10 мл 10%-ного раствора иодида калия. При этом протекает реакция

Се4+ + I - = Се3+ + 0,5I2

Образовавшийся иод оттитровывают стандартным 0,1 моль/л рас­твором тиосульфата натрия в присутствии индикатора - крахмала.

Для получения 0,01 моль/л раствора титранта в мерную колбу на 500 мл вносят 50 мл 0,1 моль/л сернокислого раствора церия (IV), приготовлен­ного, как описано выше, прибавляют 250 мл раствора серной кислоты (1 моль/л) и доводят водой до метки. Полученный раствор стандартизуют иодометрически. Для этого к 25 мл стандартизуемого сернокислого рас­твора церия (IV) прибавляют 2 мл разбавленной серной кислоты и 10 мл раствора иодида калия. Выделившийся иод титруют стандартным 0,1 моль/л раствором тиосульфата натрия в присутствии крахмала в ка­честве индикатора.

Сернокислые растворы церия (IV) можно стандартизовать также по оксалату натрия или по оксиду мышьяка (III). Соответствующие реакции идут медленно; для их ускорения в растворы вводят катализаторы - тетроксид осмия OsO4, монохлорид иода IC1.

Стандартизация по оксалату натрия основана на реакции

2Се4+ + С2O42- = 2Се3+ + 2СО2

Титрование проводят при 70 °С в присутствии индикатора.

Индикаторы метода. Кислые растворы церия (IV) окрашены в жел­то-оранжевый цвет, тогда как растворы церия (III) - бесцветны. Однако интенсивность окраски растворов церия (IV) невелика и обычно недоста­точна для визуальной фиксации КТТ по изменению окраски раствора. Поэтому цериметрическое титрование проводят в присутствии редокс - индикаторов ‒ таких, как ферроин, орто-фенантролин, дифениламин, 2,2"-дипиридил и др.

Окончание титрования определяют также потенциометрически

2.2. Применение цериметрии.

Методом цериметрического титрования можно определять многие вещества-восстановители: ртуть (I), олово (II), мышьяк (III), сурьму (III), железо (II), иодиды, нитриты, тиосульфаты, пе­роксид водорода, щавелевую кислоту и оксалаты, аскорбиновую кислоту, амины, аминокислоты, фенолы, углеводы, такие фармацевтические пре­параты, как аминазин, токоферола ацетат (витамин Е), викасол, этамзилат (2,5-дигидроксибензолсульфонат диэтиламмония) и др.

Так, при цериметрическом определении железа (II) в сульфате или в глюконате железа (II) навеску препарата растворяют в смеси разбавлен­ной серной и фосфорной кислот (фосфорная кислота связывает образую­щееся железо (III) и титруют стандартным раствором сульфата церия (IV) в присутствии индикатора ортофенантролина или ферроина:

Се4+ + е → Се3+

2FeSO4 + 2Ce(SO4)2 → Fe2(SO4)3 + Ce2(SO4)3

Цериметрическое определение аскорбиновой кислоты основано на процессе её окисления (в среде серной кислоты) 0,1 моль/л раствором сульфата церия (IV), который восстанавливается до иона церия (III). Оно имеет интенсивно-красное окрашивание. В эквивалентной точке избыток сульфата церия (IV) окисляет ион железа до трёхзарядного и происходит образование комплексного соединения голубого цвета:

https://pandia.ru/text/80/286/images/image006_20.gif" width="462" height="115">

Полученный 2-метил-1,4-дигидроксинафталин затем титруют 0,1 моль/л раствором сульфата церия (IV) в присутствии индикатора о -фенантролина. Сульфат церия (IV) окисляет 2-метил-1,4-дигидроксинафталин в кислой среде до 2-метил-1,4-диоксонафталина:

https://pandia.ru/text/80/286/images/image008_17.gif" width="545" height="185 src=">

Титруют до зелёного окрашивания, которое появляется вследствие сочетания синего цвета комплекса с желтым раствором титранта.

Цериметрический метод может быть использован для количественного определения резорцина, основанного на окислении его избытком 0,1 моль/л раствором сульфата церия (IV) в кислой среде при комнатной температуре. При окислении резорцина происходит образование глутаровой и муравьиной кислот:

Метод обладает рядом достоинств: высокий стандартный ОВ потен­циал редокс-пары Се4+|Се3+, что позволяет определять широкий круг ве­ществ-восстановителей; устойчивость растворов титранта при их хране­нии; сравнительно простая стехиометрия реакций с участием церия (IV); возможность проведения титрования в присутствии хлорид-ионов, что неприемлемо в перманганатометрии.

К недостаткам метода можно отнести его непригодность для титро­вания нейтральных и щелочных растворов; необходимость использова­ния индикаторов, что не требуется в перманганатометрии; сравнительно высокая стоимость соединений церия.

Лекция 4

Окислительно-восстановительное титрование

Сущность метода

Методы окислительно-восстановительного титрования, или редокс-методы, основаны на использовании реакций с переносом электронов - окислительно-восстановительных (ОВ) реакций. Другими словами, окислительно-восстановительное титрование, или редоксметрия, - это титрование, сопровождаемое переходом одного или большего числа электронов от иона-донора или молекулы (восстановителя) Red 1 к акцептору (окислителю) Ох 2:

Red 1 + Ох 2 = Ox 1 + Red 2

Восстановленная форма одного вещества Red 1 , отдавая электроны, переходит в окисленную форму Ох 1 того же вещества. Обе эти формы oбpaзуют oдну peдoкc-пapу Ox l ½Red l .

Окисленная форма Ох 2 второго вещества, участвующего в ОВ реакции, принимая электроны, переходит в восстановленную форму Red 2 того же вещества. Обе эти формы также образуют редокс-пару Ox 2 ½Red 2 .

В любой окислительно-восстановительной реакции участвуют, по крайней мере, две редокс-пары.

Чем выше ОВ потенциал редокс-пары Ох 2 ½Red 2 , окисленная форма которой играет роль окислителя в данной реакции, тем большее число восстановителей Red 1 можно оттитровать и определить с помощью данного окислителя Ох 2 . Поэтому в редоксметрии в качестве титрантов чаще всего применяют окислители, стандартные ОВ потенциалы редокс-пар которых имеют как можно более высокие значения, например (при комнатной температуре):

Се 4+ , Е °(Се 4+ ½Се 3+) = 1,44 В; МnО 4 ‑ , Е °(МnО 4 ‑ , Н + ½Мn 2+) = 1,51 В,

Cr 2 O 7 2‑ , Е °(Cr 2 О 7 2‑ , Н + ½Сr 3+) = 1,33 В и др.

Напротив, если определяемые вещества - окислители Ох 2 , то для их титрования целесообразно применять восстановители, стандартный ОВ редокс-пар которых имеет по возможности минимальное значение, например

Jֿ E °(J 2 ½J⁻) = 0,54 В; S 2 O 3 2‑ , (S 4 O 6 2‑ ½S 2 O 3 2‑) = 0,09 B и т.д.

Редокс-методы - важнейшие фармакопейные методы количественного анализа.

Классификация редокс-методов

Известно несколько десятков различных методов ОВ титрования. Обычно их классифицируют следующим образом.



Классификация по характеру титранта. В этом случае методы ОВ титрования подразделяют на две группы:

оксидиметрия - методы определения восстановителей с применением титранта-окислителя;

редуктометрия - методы определения окислителей с применением титранта-восстановителя.

Классификация по природе реагента, взаимодействующего с определяемым веществом. Ниже после названия соответствующего метода в скобках указано основное действующее вещество этого метода: броматометрия (бромат калия КВrO 3 , бромометрия (бром Br 2), дихроматометрия (дихромат калия К 2 Сr 2 O 7), иодотометрия (иодат калия КJO 3), иодиметрия (иод J 2), иодометрия (иодид калия КJ, тиосульфат натрия Na 2 S 2 O 3 , нитритометрия (нитрит натрия NaNO 2), перманганатометрия (перманганат калия КМnО 4). хлориодиметрия (хлорид иода JС1), цериметрия (сульфат церия(IV)).

Реже применяются некоторые другие методы ОВ титрования, такие, как: аскорбинометрия (аскорбиновая кислота), титанометрия (соли титана(III)), ванадатометрия (ванадат аммония NH 4 VO 3) и т.д.

Условия проведения окислительно-восстановительного титрования

Реакции, применяемые в методах ОВ титрования, должны отвечать ряду требований, важнейшими из которых являются следующие:

Реакции должны протекать практически до конца. ОВ реакция идет тем полнее, чем больше константа равновесия К, которая определяется соотношением

lgK = n(E 1 °‑ E 2 °)/0,059

при комнатной температуре, где E 1 ° и Е 2 ° - соответственно стандартные ОВ потенциалы редокс-пар, участвующих в данной ОВ реакции, п - число электронов, отдаваемых восстановителем окислителю. Следовательно, чем больше разность D = Е 1 ° - Е 2 °, тем выше константа равновесия, тем полнее протекает реакция. Для реакций типа

А + В = Продукты реакции

при n =1 и К ³ 10 8 (при таком значении К реакция протекает не менее чем на 99,99%) получаем для DE °:

DE ° ³ 0,059 lg 10 8 ³ 0,47 В.

Реакция должна протекать достаточно быстро, чтобы равновесие, при котором реальные ОВ потенциалы обеих редокс-пар равны, устанавливалось практически мгновенно. Обычно ОВ титрование проводят при комнатной температуре. Однако в случае медленно протекающих ОВ реакций растворы иногда нагревают, чтобы ускорить ход реакции. Так, реакция окисления сурьмы(Ш) бромат-ионами в кислой среде при комнатной температуре идет медленно. Однако при 70-80 °С она протекает достаточно быстро и становится пригодной для броматометрического определения сурьмы.

Для ускорения достижения равновесия применяют также гомогенные катализаторы. Рассмотрим, например, реакцию

HAsO 2 + 2Се 4+ + 2H 2 O = H 3 AsO 4 + 2Се 3+ + 2H +

Стандартные ОВ потенциалы редокс-пар, участвующих в реакции, равны при комнатной температуре E °(Се 4+ ½Се 3+) = 1,44 В, E º (H 3 AsO 4 ½HAsO 2 = 0,56 В. Отсюда для константы равновесия этой реакции получаем (n = 2)

lgK = (1,44 ‑ 0,56) /0,059 ≈ 30; К≈ 10 30

Константа равновесия велика, поэтому реакция идет с очень высокой степенью полноты. Однако в обычных условиях она протекает медленно. Для ее ускорения в раствор вводят катализаторы.

Иногда катализатором являются сами продукты ОВ реакции. Так, при перманганатометрическом титровании оксалатов в кислой среде по схеме

5C 2 O 4 2‑ + 2МnО 4 ‾ + 16Н + = 2Мn 2+ + 10CO 2 + 8Н 2 O

в роли катализатора выступают катионы марганца(II) Мn 2+ . Поэтому вначале при прибавлении раствора титранта - перманганата калия - к титруемому раствору, содержащему оксалат-ионы, реакция протекает медленно. B связи с этим титруемый раствор нагревают. По мере образования катионов марганца(II) достижение равновесия ускоряется и титрование проводится без затруднений.

Реакция должна протекать стехиометрически , побочные процессы должны быть исключены.

Конечная точка титрования должна определяться точно и однозначно либо с индикаторами, либо без индикаторов.

Виды окислительно-восстановительного титрования

В ОВ титровании, как и в кислотно-основном титровании, применяют прямое, обратное и заместительное титрование. Наиболее точные результаты получают, при прочих равных условиях, при прямом титровании.

В расчетах результатов ОВ титрования молярную массу эквивалента реагирующего вещества А (окислителя или восстановителя) М (1 / 2 А.) и молярную концентрацию эквивалента с (1 / 2 А) вычисляют, исходя из того, что в ОВ реакции величина z равна числу электронов п, принимающих участие в реакции, т.е. разности степеней окисления окисленной и восстановленной форм данного вещества А:

M (1 / 2 A) = M (A)/z; с (1 / 2 А) = zc (А),

где М (А) и с (А) - соответственно молярная масса и молярная концентрация вещества А.

Прямое ОВ титрование проводят тогда, когда ОВ реакция удовлетворяет требованиям, перечисленным выше.

Рассмотрим, например, определение железа(II) прямым пермангана-тометрическим титрованием по схеме

5Fe 2+ + МnO 4 ‾ + 8H + = Мn 2+ + 5Fe 3+ + 4H 2 O

Аликвоту анализируемого раствора, содержащего железо(П), титруют стандартным раствором перманганата калия.

Полуреакции:

Fe 2+ ‑ e = Fe 3+

МnO 4 ‾ + 5е + 8Н + = Мn 2+ + 4H 2 O

В ОВ реакции участвуют 5 электронов.

В соответствии с законом эквивалентов n (Fe 2+) = n (1 / 5 МnO 4 ‾). Количество эквивалентов можно, как обычно, представить в виде произведения молярной концентрации эквивалента на объем соответствующего раствора:

c (Fe 2+)V (Fe 2+) = с (1 / 5 МnO 4 ‾)V (МnO 4 ‾),

c (Fe 2+)= с (1 / 5 МnO 4 ‾)V (МnO 4 ‾)
V (Fe 2+)

Зная объемы аликвоты анализируемого раствора V (Fe 2+)и титранта V (МnO 4 ‾), а также концентрацию раствора титранта с (1 / 5 МnO 4 ‾), рассчитывают концентрацию c (Fe 2+)определяемого вещества в исходном анализируемом растворе. Массу т железа(II) во всем объеме V (в литрах) исходного анализируемого раствора рассчитывают обычным путем:

m = c (Fe 2+)M (Fe 2+)V.

Обратное ОВ титрование проводят тогда, когда применение прямого титрования нецелесообразно по тем или иным причинам.

К аликвоте анализируемого раствора, содержащего определяемый компонент X. прибавляют точно известное количество вещества А, взятого в избытке по сравнению с его стехиометрическим количеством, и выдерживают раствор некоторое время для обеспечения полноты протекания реакции между Х и А. Непрореагировавший избыток вещества А оттитровывают стандартным раствором титранта Т.

Так например, при иодиметрическом определении сульфид-иона к аликвоте анализируемого раствора, содержащего сульфид-ионы, прибавляют в избытке точно известное количество раствора иода. Протекает реакция

S 2 ‾ +J 2 = S+ 2J‾

Непрореагировавший избыток иода отгитровывают стандартным раствором тиосульфата натрия:

2Na 2 S 2 O 3 + J 2 = Na 2 S 4 O 6 + 2NaJ

Расчеты проводят, исходя из закона эквивалентов с учетом полуреакций:

m = c (1 / 2 S 2 ‾)M (1 / 2 S 2 ‾)V,

где V - общий объем исходного анализируемого раствора.

Заместительное ОВ титрование применяют для определения веществ как вступающих, так и не вступающих в ОВ реакции.

Так, при иодометрическом определении пероксида водорода к аликвоте анализируемого раствора, содержащего определяемый пероксид водорода в серно-кислой среде, прибавляют избыточное по сравнению со стехиометрическим количество иодида калия. При этом протекает реакция с образованием иода:

Н 2 О 2 +2J‾ + 2Н + = J 2 + 2Н 2 O

Выделившийся иод (заместитель) в количестве, эквивалентном количеству пероксида водорода в аликвоте. оттитровывают стандартным раствором тиосульфата натрия:

2 Na 2 S 2 O 3 + J 2 = Na 2 S 4 O 6 + 2NaJ

Расчеты проводят так же, как и при прямом титровании, исходя из закона эквивалентов, с учетом того, что молекула пероксида водорода принимает два электрона (z = п = 2), два иодид-иона теряют вместе два электрона, переходя в молекулу иода J 2 (z = п = 2); для тиосульфат-иона, как уже отмечалось выше, z = 1.

Методом заместительного ОВ титрования можно определять карбонаты, хотя они и не обладают ОВ свойствами. Так, например, можно определить карбонат-ион в карбонате кальция. Для этого карбонат кальция растворяют в кислоте:

СаСО 3 + 2H + = Са 2+ + СО 2 + H 2 O

Затем катионы кальция осаждают в виде оксалата кальция:

Са 2+ + С 2 O 4 2 ‾ = СаС 2 O 4 ↓

Выделившийся осадок оксалата кальция отделяют, промывают и растворяют в кислоте:

Na 2 S 2 O 3 + 2Н + = Са 2+ + Н 2 С 2 O 4

Образовавшуюся щавелевую кислоту титруют стандартным раствором перманганата калия:

5Н 2 С 2 O 4 + 2КМnO 4 + 2H 2 SO 4 = 2MnSO 4 + 10CO 2 + 8H 2 O

В данной реакции молекула щавелевой кислоты отдает два электрона:

Н 2 С 2 O 4 ‑ 2е = 2CO 2 + 2Н +

поэтому для нее z = 2. Для перманганата калия, как отмечалось выше, z = 5. С учетом этого обстоятельства проводят расчеты обычным путем, исходя из закона эквивалентов (ниже все обозначения соответствуют принятым ранее):

n (СаСО 3) = n (Н 2 С 2 O 4)

n (1 / 2 Н 2 С 2 O 4) = n (1 / 5 КМnO 4)

n (1 / 2 Н 2 С 2 O 4) = c (1 / 5 КМnO 4) V (КМnO 4)

n (Н 2 С 2 O 4) = 0,5 n (1 / 2 Н 2 С 2 O 4)

n (СаСО 3) = 0,5 c (1 / 5 КМnO 4) V (КМnO 4)

m (СаСО 3) = n (СаСО 3) M (СаСО 3) = 0,5c (1 / 5 КМnO 4) V (КМnO 4) M (СаСО 3)

(РЕДОКСОМЕТРИЯ, ОКСИДИМЕТРИЯ)

Сущность и классификация методов окислительно-восстановительного титрования

Методы редоксометрии основаны на реакциях окисления-восстановления. Разработано очень много методов. Их классифицируют в соответствии с применяемым стандартным (рабочим, титрантом) раствором. Наиболее часто применяются следующие методы:

Перманганатометрия - метод, который основан на окислительной способности рабочего раствора перманганата калия KМnO4. Титрование ведется без индикатора. Применяется для определения только восстановителей при прямом титровании.

Иодометрия – метод, в котором рабочим титрованным раствором служит раствор свободного иода в КI. Метод позволяет определять как окислители, так и восстановители. Индикатором служит крахмал.

Дихроматометрия основана на использовании в качестве рабочего раствора дихромата калия K2Cr2O7. Метод может применяться как для прямых так и косвенных определений восстановителей.

Броматометрия основана на использовании в качестве титранта бромата калия KBrO3 при определении восстановителей.

Иодатометрия применяет в качестве рабочего раствора раствор иодата калия KIO3 при определении восстановителей.

Ванадатометрия дает возможность использовать окислительную способность ванадата аммоноя NH4VO3. Кроме перечисленных методов в лабораторной практике используются и такие методы как цериметрия (Ce4+), титанометрия и другие.

Для вычисления молярной массы эквивалента окислителей или восстановителей учитывается число электронов, принимающих участие в окислительно-восстановительной реакции (Мэ = М/ne , где n – число электронов е). Для определения числа электронов необходимо знать начальную и конечную степень окисления окислителя и восстановителя.

Из большого числа окислительно-восстановительных реакций для химического анализа используют только те реакции, которые:

· протекают до конца;

· проходят быстро и стехиометрично;

· образуют продукты определенного химического состава (формулы);

· позволяют точно фиксировать точку эквивалентности;

· не вступают в реакцию с побочными продуктами, присутствующими в исследуемом растворе.

Наиболее важными факторами, оказывающими влияние на скорость реакции, являются:

· концентрация реагирующих веществ;

· температура;

· значение рН раствора;

· присутствие катализатора.

В большинстве случаев скорость реакции находится в прямой зависимости от температуры и рН раствора. Поэтому многие определения методом окислительно-восстановительного титрования следует проводить при определенном значении рН и при нагревании.

Индикаторы окислительно-восстановительного титрования

окислительный восстановительный титрование

При анализе методами окислительно-восстановительного титрования используется прямое, обратное и заместительное титрование. Точка эквивалентности окислительно-восстановительного титрования фиксируется как с помощью индикаторов, так и безиндикаторным способом. Безиндикаторный способ применяется в тех случаях, когда окисленная и восстановленная формы титранта отличаются. В точке эквивалентности, при введении 1 капли избытка раствора титранта изменит окраску раствора. Безиндикаторным способом можно проводить определения перманганатометрическим методом, т.к. в точке эквивалентности от одной капли раствора перманганата калия титруемый раствор окращивается в бледнорозовый цвет.

При индикаторном способе фиксирования точки эквивалентности применяют специфические и редоксиндикаторы. К специфическим индикаторам относится крахмал в иодометрии, который в присутствии свободного иода окрашивается в интенсивно-синий цвет вследствие образования адсорбционного соединения синего цвета. Редокс-индикаторы – это вещества, у которых окраска меняется при достижении определенного значения окислительно-восстановительного (редокспотенциала). К редокс-индикаторам относится, например, дифениламин NH(C6H5)2. При действии на бесцветные растворы его окислителями он окрашивается в сине-фиолетовый цвет.

Редокс-индикаторам предъявляют следующие требования:

· окраска окисленной и восстановленной формы должна быть различна;

· изменение цвета должно быть заметно при небольшом количестве индикатора;

· индикатор должен реагировать в точке эквивалентности с весьма небольшим избытком восстановителя или окислителя;

· интервал действия его должен быть как можно меньше;

· индикатор должен быть устойчив к воздействию компонентов окружающей среды (О2, воздуха, СО2, света и т.п.).

Интервал действия редокс-индикатора рассчитывается по формуле:

Е = Ео ± 0,058/n ,


где Ео - нормальный окислительно-восстановительный потенциал индикатора (в справочнике), n - число электронов, принимающих в процессе окисленияили восстановления индикатора.

Перманганатометрия

В основе перманганатометрии лежит реакция окисления различных восстановителей рабочим раствором перманганата калия, т.е. ионом MnO4-. Окисление перманганатом калия можно проводить в кислой, нейтральной и в щелочной среде

В сильнокислой среде перманганат-ионы (МnО4-) обладают высоким окислительно-восстановительным потенциалом, восстанавливаясь до Мn2+, и их применяют для определения многих восстановителей:

МnО4- + 8Н+ + 5е = Мn2+ + 4Н2О

Е0 МnО4- / Мn2+ = 1,51 В

В щелочной среде МnО4- восстанавливается до манганат иона:

МnО4- + е = МnО42-

В нейтральной или слабощелочной среде перманганат ион восстанавливается до марганцовистой кислоты MnO(OH)2 или до MnO2:

МnО4- + 2Н2О + 3е = МnО2↓ + 4ОН-

Е0 МnО4- / МnО2 = 0,59 В

При титровании перманганатом не применяют индикаторы, так как реагент сам окрашен и является чувствительным индикатором: 0,1 мл 0,01М раствора КМnО4 окрашивает 100 мл воды в бледно-розовый цвет. В результате реакции перманганата калия с восстановителем в кислой среде образуются бесцветные ионы Мn2+, что позволяет четко фиксировать точку эквивалентности.

Раствор КМnО4 относится к титрантам с установленным титром. В связи с этим перед использованием его в анализе в качестве титранта раствор КМnО4 стандартизируют по концентрации растворов исходных веществ шавелевой кислоты или оксалата натрия. Раствор перманганата калия очень трудно получить в чистом виде. Обычно он загрязнен следами оксида марганца (IV). Кроме того, чистая дистиллированная вода обычно содержит следы веществ, которые восстанавливают перманганат калия с образованием оксида марганца (IV):

4 КМnО4 + 2Н2О = 4 МnО2↓ + 4ОН- + 3О2

При хранении в твердом виде перманганат калия разлагается под действием света, загрязняясь также МnО2:

КМnО4 = К2МnО4 + МnО2↓ + О2

Раствор перманганата калия может быть приготовлен из стандарт - титра и по навеске взятой на технических весах. В первом случае содержимое ампулы количественно переносится в мерную колбу вместимостью 2л, опаласкивая ампулу и воронку теплой дистиллированной водой. Внести в мерную колбу небольшой объем горячей воды для растворения кристаллов, затем полученный раствор охладить до комнатной температуры, объем раствора довести до метки и пермешать. Молярная концентрация полученного раствора составляет 0,05 моль/л.

Во втором случае на технических весах в бюксе или на часовом стекле отвесить навеску перманганата калия массой 1,6 г, поместить ее в химический стакан и растворять в горячей дистиллированной воде при тщательном перемешивании образующегося раствора, стараясь, чтобы все кристаллы КМnО4 растворились. Затем раствор осторожно слить через воронку в мерную колбу вместимостью 1 л и тщательно перемешать, предварительно закрыв колбу притертой пробкой (резиновую пробку не использовать). Приготовленный раствор КМnО4 оставить на 7-10 дней, затем отфильтровать раствор через воронку со стекляной ватой или осторожно слить в другую склянку при помощи сифона. Хранить раствор КМnО4 обязательно в темных склянках, защищенных от света, чтобы предупредить разложение.

Установку титра раствора перманганата калия, приготовленного по взятой навеске, можно проводить по щавелевой кислоте Н2С2О4*2Н2О или оксалату натрия Na2C2O4.

Определение нитрит-ионов в растворе

В нейтральной или щелочной среде нитриты не реагируют с перманганатом калия; в кислом горячем растворе они окисляются до нитратов:

5КNO3 + 2КМnО4 + 3Н2SO4 = 2MnSO4 + 5КNO2 + K2SO4 + 3H2O

При медленном титровании подкисленного раствора нитрита натрия раствором перманганата калия получаются пониженные результаты, потому что нитриты легко окисляются кислотами с образованием оксидов азота:

2NO2- + 2H+ → 2 HNO2 → NO2- + NO + H2O

Поэтому во избежание потерь можно использовать способ обратного титрования или метод Люнге - титрование раствором нитрита натрия подкисленного раствора перманганата калия.

Определение кальция в карбонате кальция

Определение кальция в растворе методом перманганатометрического титрования возможно способом обратного или заместительного титрования. В первом случае, в раствор содержащий кальций вводится точно измеренный избыток титрованного раствора щавелевой кислоты. Образовавшийся СаС2О4 + Н2SO4осадок СаС2О4 отфильтровывается, а остаток, не вошедший в реакцию щавелевой кислоты, оттитровывается стандартным раствором перманганата калия. По разности введенного объема и остатка определяется сколько щавелевой кислоты потребовалось на осаждение Са2+, что будет эквивалентно содержанию кальция в растворе.

По способу заместительного титрования Са2+ выделяется в виде осадка СаС2О4, который отфильтровывается, промывается и растворяется в Н2SO4 или НС1.

СаС2О4 + Н2SO4 → Н2С2О4 + СаSO4

Образовавшаяся щавелевая кислота оттитровывается стандартным раствором перманганата калия, количество которого эквивалентно содержанию кальция в растворе.

Иодометрия

Иодометрический метод титриметрического анализа основан на реакции:

I2 + 2e= 2I- ; Ео I2 / 3I- = 0,545 B

Понравилась статья? Поделиться с друзьями: