Какие кислоты не распадаются на ионы. Примеры диссоциации веществ без учета гидратации (в упрощенной форме)

Теорию электролитической диссоциации предложил шведский ученый С. Аррениус в 1887 году.

Электролитическая диссоциация - это распад молекул электролита с образованием в растворе положительно заряженных (катионов) и отрицательно заряженных (анионов) ионов.

Например, уксусная кислота диссоциирует так в водном растворе:

CH 3 COOH⇄H + +CH 3 COO - .

Диссоциация относиться к обратимым процессам. Но различные электролиты диссоциируют по-разному. Степень зависит от природы электролита, его концентрации, природы растворителя, внешних условий (температуры, давления).

Степень диссоциации α - отношение числа молекул, распавшихся на ионы, к общему числу молекул:

α=v´(x)/v(x).

Степень может варьироваться от 0 до 1 (от отсутствия диссоциации до ее полного завершения). Обозначается в процентах. Определяется экспериментальным путем. При диссоциации электролита происходит увеличение числа частиц в растворе. Степень диссоциации показывает силу электролита.

Различают сильные и слабые электролиты .

Сильные электролиты - это те электролиты, степень диссоциации которой превышает 30%.

Электролиты средней силы - это те, степень диссоциации которой делит в пределах от 3% до 30%.

Слабые электролиты - степень диссоциации в водном 0,1 М растворе меньше 3%.

Примеры слабых и сильных электролитов.

Сильные электролиты в разбавленных растворах нацело распадаются на ионы, т.е. α = 1. Но эксперименты показывают, что диссоциация не может быть равна 1, она имеет приближенное значение, но не равна 1. Это не истинная диссоциация, а кажущаяся.

Например, пусть у некоторого соединения α = 0,7. Т.е. по теории Аррениуса в растворе «плавает» 30% непродиссоцииовавших молекул. А 70% образовали свободные ионы. А электролстатическая теория дает другое определение этому понятию: если α = 0,7, то все молекулы диссоциированы на ионы, но ионы свободны лишь на 70%, а оставшиеся 30% - связаны электростатическими взаимодействиями.

Кажущаяся степень диссоциации.

Степень диссоциации зависит не только от природы растворителя и растворяемого вещества, но и от концентрации раствора и температуры.

Уравнение диссоциации можно представить в следующем виде:

AK ⇄ A- + K + .

И степень диссоциации можно выразить так:

С увеличением концентрации раствора степень диссоциации электролита падает. Т.е. значения степени для конкретного электролита не является величиной постоянной.

Так как диссоциация - процесс обратимый, то уравнения скоростей реакции можно записать следующим образом:

Если диссоциация равновесна, то скорости равны и в результате получаем константу равновесия (константу диссоциации):

К зависит от природы растворителя и от температуры, но не зависит от концентрации растворов. Из уравнения видно, что чем больше недиссоциированных молекул, тем меньше величина константы диссоциации электролита.

Многоосновные кислоты диссоциируют ступенчато, и каждая ступень имеет свое значение константы диссоциации.

Если диссоциирует многоосновная кислота, то легче всего отщепляется первый протон, а при возрастании заряда аниона, притяжение возрастает, и поэтому протон отщепляется намного труднее. Например,

Константы диссоциации ортофосфорной кислоты на каждой ступени должны сильно различаться:

I - стадия:

II - стадия:

III - стадия:

На первой ступени ортофосфорная кислота - кислота средней силы, а 2ой - слабая, на 3ей - очень слабая.

Примеры констант равновесия для некоторых растворов электролитов.

Рассмотрим пример:

Если в раствор, в котором содержатся ионы серебра внести металлическую медь, то в момент равновесия, концентрация ионов меди должна быть больше, чем концентрация серебра.

Но у константы низкое значение:

AgCl⇄Ag + +Cl - .

Что говорит о том, что к моменту достижения равновесия растворилось очень мало хлорида серебра.

Концентрация металлической меди и серебра введены в константу равновесия.

Ионное произведение воды.

В приведенной таблице есть данные:

Эту константу называют ионным произведением воды , которое зависит только от температуры. Согласно диссоциации на 1 ион Н + приходится один гидроксид-ион. В чистой воде концентрация этих ионов одинакова: [H + ] = [OH - ].

Отсюда, [H + ] = [OH - ] = = 10-7 моль/л.

Если добавить в воду постороннее вещество, например, хлороводородную кислоту, то концентрация ионов водорода возрастет, но ионное произведение воды от концентрации не зависит.

А если добавить щелочь, то повысится концентрация ионов, а количество водорода понизится.

Концентрация и взаимосвязаны: чем больше одна величина, тем меньше другая.

Кислотность раствора (рН).

Кислотность растворов обычно выражается концентрацией ионов Н + . В кислых средах рН <10 -7 моль/л, в нейтральных - рН = 10 -7 моль/л, в щелочных - рН > 10 -7 моль/л.
Кислотность раствора выражают через отрицательный логарифм концентрации ионов водорода, называя ее рН .

рН = - lg [ H + ].

Взаимосвязь между константой и степенью диссоциации.

Рассмотрим пример диссоциации уксусной кислоты:

Найдем константу:

Молярная концентрация С=1/ V , подставим в уравнение и получим:

Эти уравнения являются законом разведения В. Оствальда , согласно которому константа диссоциации электролита не зависит от разведения растовра.

Электролитическая диссоциация кислот

При растворении в воде кислоты, соли и основания диссоциируют на положительно и отрицательно заряженные ионы (катионы и анионы). Определим характерные общие признаки диссоциации электролитов каждого класса соединений.

Кислоты, как вы помните, состоят из Гидрогена и кислотного остатка, соединенных ковалентной полярной связью. В предыдущем параграфе на примере растворения гидроген хлорида мы рассмотрели, как под действием молекул воды полярная связь превращается в ионную, и кислота распадается на катионы Гидрогена и хлорид-ионы.

Таким образом, с точки зрения теории электролитической диссоциации Аррениуса,

Кислоты — это электролиты, при диссоциации которых образуются катионы Гидрогена и анионы кислотного остатка.

Подобно хлоридной кислоте протекает диссоциация и других кислот, например нитратной:

При диссоциации молекулы сульфатной кислоты число катионов Гидрогена вдвое превышает число анионов кислотного остатка — сульфат-ионов. Заряд аниона равен -2 (в формулах ионов записывают «2-»):

Названия анионов, образующихся при диссоциации кислот, совпадают с названиями кислотных остатков. Они приведены в таблице растворимости на форзаце.

Легко заметить, что при диссоциации различных кислот образуются различные анионы, но катионы только одного типа — катионы Гидрогена H+. Значит, именно катионы Гидрогена определяют характерные свойства кислот — кислый вкус, изменение окраски индикаторов, реакции с активными металлами, основными оксидами, основаниями и солями.

Многоосновные кислоты диссоциируют ступенчато, отщепляя ионы Гидрогена последовательно, друг за другом. Например, в растворе сульфатной кислоты протекают следующие процессы:

Как видно из приведенных уравнений диссоциации многоосновной кислоты, анионы, образующиеся при ступенчатой диссоциации на первой стадии, содержат ионы Гидрогена. Это отражено в названии анионов: HSO - — гидрогенсульфат-ион.

Электролитическая диссоциация ортофосфатной кислоты проходит в три стадии:

Суммарное уравнение диссоциации ортофосфатной кислоты имеет вид:

Таким образом, каждой многоосновной кислоте соответствует несколько анионов, и все они одновременно присутствуют в растворе.

Обратите внимание, что в некоторых уравнениях диссоциации стоят двунаправленные стрелки. Что они означают, вы узнаете в следующем параграфе.


Электролитическая диссоциация оснований

Основания состоят из катионов металлического элемента и гидроксид-анионов. При диссоциации оснований эти ионы переходят в раствор. Число гидроксид-ионов, образующихся при диссоциации, равно заряду иона металлического элемента. Таким образом, с точки зрения теории электролитической диссоциации

Основания — это электролиты, которые диссоциируют на катионы металлического элемента и гидроксид-анионы.

Рассмотрим уравнения диссоциации оснований на примере диссоциации натрий и барий гидроксидов:

При диссоциации оснований образуются анионы одного типа — гидроксид-ионы, определяющие все характерные свойства растворов щелочей: способность менять окраску индикаторов, реагировать с кислотами, кислотными оксидами и солями.

Электролитическая диссоциация солей

Соли образованы катионами металлического элемента и анионами кислотного остатка. При растворении солей в воде эти ионы переходят в раствор.

Соли — это электролиты, которые диссоциируют на катионы металлического элемента и анионы кислотного остатка.

Рассмотрим диссоциацию солей на примере диссоциации калий нитрата:

Аналогично диссоциируют и другие соли, например нитрат кальция и калий ортофосфат:

В уравнениях диссоциации солей заряд катиона по абсолютной величине равен степени окисления металлического элемента, а заряд аниона — сумме степеней окисления элементов в кислотном остатке. Например, купрум(П) сульфат распадается на ионы

а феррум(Ш) нитрат — на ионы

Заряд катионов металлических элементов в большинстве случаев можно определить по Периодической системе. Заряды катионов металлических элементов главных подгрупп обычно равны номеру группы, в которой расположен элемент:

Металлические элементы побочных подгрупп обычно образуют несколько ионов, например Fe 2 +, Fe 3 +.

Заряды кислотных остатков проще определять по числу ионов Гидрогена в составе молекулы кислоты, как вы это делали в 8 классе. Заряды некоторых кислотных остатков приведены в таблице растворимости на форзаце.

Обратите внимание, что в уравнениях диссоциации кислот, оснований и солей суммарный заряд катионов и анионов должен быть равен нулю, поскольку любое вещество является электронейтральным.

Ступенчатая диссоциация обусловливает возможность существования кислых и основных солей. Кислые соли содержат ионы Гидрогена, как кислоты. Именно поэтому такие соли называют кислыми. А в основных солях содержатся гидроксид-ионы, как в основаниях.

На первой стадии диссоциации сульфатной кислоты образуется гидрогенсульфат-ион HSO-, благодаря чему существуют кислые соли: NaHSO 4 (натрий гидрогенсульфат), Al(HSO 4) 3 (алюминий гидрогенсульфат) и др. Для ортофосфатной кислоты также характерны кислые соли K 2 HPO 4 (калий гидрогенортофосфат) или KH 2 PO 4 (калий дигидрогенортофосфат).

В растворах кислые соли диссоциируют в две стадии:

Кислые соли характерны только для многоосновных кислот, поскольку они диссоциируют ступенчато. Единственным исключением является одноосновная кислота — флуоридная. Благодаря водородным связям в растворе этой кислоты присутствуют частицы H 2 F 2 , и флуоридная кислота может образовывать кислую соль состава KHF 2 .

Некоторые нерастворимые гидроксиды образуют катионы, в которых имеется гидроксид-ион. Например, алюминий содержится в составе катиона AlOH 2+ , благодаря чему существует соль состава AlOHCl 2 (алюминий гидроксохлорид). Такую соль называют основной.


Ключевая идея

Контрольные вопросы

100. Дайте определение кислотам, основаниям и солям с точки зрения теории электролитической диссоциации.

101. В чем особенность диссоциации многоосновных кислот по сравнению с одноосновными? Объясните на примере сульфатной кислоты.

Задания для усвоения материала

102. В результате диссоциации молекулы кислоты образовался ион с зарядом 3—. Сколько ионов Гидрогена при этом образовалось?

103. Составьте уравнения электролитической диссоциации кислот: карбонатной, бромидной, нитритной. Назовите образующиеся анионы.

104. Какие из приведенных кислот будут диссоциировать ступенчато: HCl, H 2 CO 3 , HNO 3 , H 2 S, H 2 SO 3 ? Ответ подтвердите уравнениями реакций.

105. Составьте уравнения диссоциации солей: магний нитрата, алюминий хлорида, барий бромида, натрий карбоната, натрий ортофосфата.

106. Приведите по одному примеру солей, при диссоциации которых количеством вещества 1 моль образуется: а) 2 моль ионов; б) 3 моль ионов; в) 4 моль ионов; г) 5 моль ионов. Запишите уравнения диссоциации.

107. Запишите заряды ионов в веществах: a) Na 2 S, Na 2 SO 4 , Na 3 PO 4 , AlPO 4 ;

б) NaHSO 4 , Mg(HSO 4) 2 , CaHPO 4 , Ba(OH) 2 . Назовите эти вещества.

108. Составьте уравнения электролитической диссоциации веществ: калий гидроксида, барий сульфида, феррум(Ш) нитрата, магний хлорида, алюминий сульфата.

109. Составьте формулу вещества, при диссоциации которого образуются ионы Кальция и гидроксид-ионы.

110. Из перечня веществ выпишите отдельно электролиты и неэлектролиты: HCl, Ca, Cr 2 (SO 4) 3 , Fe 2 O 3 , Mg(OH) 2 , CO 2 , Sr(OH) 2 , Sr(NO 3) 2 , P 2 O 5 , H 2 O. Составьте уравнения диссоциации электролитов.

111. При диссоциации некоего нитрата образовался 1 моль катионов с зарядом 2+. Какое количество вещества нитрат-ионов при этом образовалось?

112. Составьте формулы и запишите уравнения диссоциации феррум(П) сульфата и феррум(Ш) сульфата. Чем отличаются эти соли?

113. Приведите по одному примеру уравнений диссоциации солей в соответствии со схемами (буквой М обозначен металлический элемент, а Х — кислотный остаток): а) МХ ^ М 2+ + Х 2- ; б) МХ 3 ^ М 3+ + 3Х - ;

в) М 3 Х ^ 3М+ + Х 3- ; г) М 2 Х 3 ^ 2М 3 + + 3Х 2- .

114. В растворе присутствуют ионы K+, Mg 2 +, NO-, SO4 - . Какие вещества растворили? Приведите два варианта ответа.

115*. Составьте уравнения диссоциации тех электролитов, которые образуют хлорид-ионы: CrCl 3 , KClO 3 , BaCl 2 , Ca(ClO) 2 , HClO 4 , MgOHCl.

Это материал учебника

При диссоциации кислот роль катионов играют ионы водорода (H +), других катионов при диссоциации кислот не образуется:

HF ↔ H + + F - HNO 3 ↔ H + + NO 3 -

Именно ионы водорода придают кислотам их характерные свойства: кислый вкус, окрашивание индикатора в красный цвет и проч.

Отрицательные ионы (анионы), отщепляемые от молекулы кислоты, составляеют кислотный остаток .

Одной из характеристик диссоциации кислот является их оснОвность - число ионов водорода, содержащихся в молекуле кислоты, которые могут образоываваться при диссоциации:

  • одноосновные кислоты: HCl, HF, HNO 3 ;
  • двухосновные кислоты: H 2 SO 4 , H 2 CO 3 ;
  • трехосновные кислоты: H 3 PO 4 .

Процесс отщепления катионов водорода в многоосновных кислотах происходит ступенчато: сначала отщепляется один ион водорода, затем другой (третий).

Ступенчатая диссоциация двухосновной кислоты:

H 2 SO 4 ↔ H + + HSO 4 - HSO 4 - ↔ H + + HSO 4 2-

Ступенчатая диссоциация трехосновной кислоты:

H 3 PO 4 ↔ H + + H 2 PO 4 - H 2 PO 4 - ↔ H + + HPO 4 2- HPO 4 2- ↔ H + + PO 4 3-

При диссоциации многоосновных кислот самая высокая степень диссоциации приходится на первую ступень. Например, при диссоциации фосфорной кислоты степень диссоциации первой ступени равняется 27%; второй - 0,15%; третьей - 0,005%.

Диссоциация оснований

При диссоциации оснований роль анионов играют гидроксид-ионы (ОH -), других анионов при диссоциации оснований не образуется:

NaOH ↔ Na + + OH -

Кислотность основания определяется кол-вом гидроксид-ионов, образующихся при диссоциации одной молекулы основания:

  • однокислотные основания - KOH, NaOH;
  • двухкислотные основания - Ca(OH) 2 ;
  • трехкислотные основания - Al(OH) 3 .

Многокислотные основания диссоциируют, по аналогии с кислотами, также ступенчато - на каждом этапе отщепляется по одному гидроксид-иону:

Некоторые вещества, в зависимости от условий, могут выступать, как в роли кислот (диссоциировать с отщеплением катионов водорода), так и в роли оснований (диссоциировать с отщеплением гидроксид-ионов). Такие вещества называются амфотерными (см. Кислотно-основные реакции).

Диссоциация Zn(OH) 2 , как основания:

Zn(OH) 2 ↔ ZnOH + + OH - ZnOH + ↔ Zn 2+ + OH -

Диссоциация Zn(OH) 2 , как кислоты:

Zn(OH) 2 + 2H 2 O ↔ 2H + + 2-

Диссоциация солей

Соли диссоциируют в воде на анионы кислотных остатков и катионы металлов (или других соединений).

Классификация диссоциации солей:

  • Нормальные (средние) соли получаются полным одновременным замещением всех атомов водорода в кислоте на атомы металла - это сильные электролиты, полностью диссоциируют в воде с образованием катоинов металла и однокислотного остатка: NaNO 3 , Fe 2 (SO 4) 3 , K 3 PO 4 .
  • Кислые соли содержат в своем составе кроме атомов металла и кислотного остатка, еще один (несколько) атомов водорода - диссоциируют ступенчато с образованием катионов металла, анионов кислотного остатка и катиона водорода: NaHCO 3 , KH 2 PO 4 , NaH 2 PO 4 .
  • Основные соли содержат в своем составе кроме атомов металла и кислотного остатка, еще одну (несколько) гидроксильных групп - диссоциируют с образованием катионов металла, анионов кислотного остатка и гидроксид-иона: (CuOH) 2 CO 3 , Mg(OH)Cl.
  • Двойные соли получаются одновременным замещением атомов водорода в кислоте на атомы различных металлов: KAl(SO 4) 2 .
  • Смешанные соли диссоциируют на катионы металла и анионы нескольких кислотных остатков: CaClBr.
Диссоциация нормальной соли: K 3 PO 4 ↔ 3K + + PO 4 3- Диссоциация кислой соли: NaHCO 3 ↔ Na + + HCO 3 - HCO 3 - ↔ H+ + CO 3 2- Диссоциация основной соли: Mg(OH)Cl ↔ Mg(OH) + + Cl - Mg(OH) + ↔ Mg 2+ + OH - Диссоциация двойной соли: KAl(SO 4) 2 ↔ K + + Al 3+ + 2SO 4 2- Диссоциация смешанной соли: CaClBr ↔ Ca 2+ + Cl - + Br -
  • История электролитической диссоциации

    Н 3 РО 4 ⇄ Н + Н 2 РО- 4 (первая ступень)
    Н 2 РО 4 ⇄ Н + НРO 2 – 4 (вторая ступень)
    Н 2 РО 4 ⇄ Н+ PО З - 4 (третья ступень)

    Так выглядят химические уравнения электролитической диссоциации кислот. В примере показана электролитическая диссоциация кислоты Н 3 РО 4 которая распадается на водород H (катион) и ионы анодов. Причем диссоциация много основных кислот проходит, как правило, только по первой ступени.

    Электролитическая диссоциация оснований

    Основания отличаются от кислот тем, что при их диссоциации в качестве катионов образуются гидроксид-ионы.

    Пример уравнения химической диссоциации оснований

    KOH ⇄ K + OH-; NH 4 OH ⇄ NH+ 4 + OH-

    Основания, которые растворяются в воде, называют щелочами, их не так уж и много, в основном это основания щелочных и щелочноземельных , таких как LiOH, NaОН, КОН, RbОН, СsОН, FrОН и Са(ОН) 2 , Sr(ОН) 2 , Ва(ОН) 2 , Rа(ОН) 2

    Электролитическая диссоциация солей

    При электролитической диссоциации солей в качестве катионов образуются металлы, а также катион аммония NH 4 , а анионами стают кислотные остатки.

    (NH 4) 2 SO 4 ⇄ 2NH+ 4 + SO 2 – 4 ; Na 3 PO 4 ⇄ 3Na + PO 3- 4

    Пример уравнения электролитической диссоциации солей.

    Электролитическая диссоциация, видео

    И в завершение образовательное видео по теме нашей статьи.


  • Кроме константы диссоциации силу электролита можно определить по значению другого параметра, зависящего от концентрации раствора. Таким параметром является кажущаяся степень диссоциации которая показывает долю молекул распавшихся на ионы.

    Степень диссоциации ( ) - это отношение числа распавшихся на ионы молекул (N дис. ) к общему числу молекул растворенного вещества (N общ. ) :

    Степень диссоциации выражают в долях единицы или в процентах. Поскольку общее число молекул вещества в растворе пропорционально количеству его вещества и его молярной концентрации, то можно записать:

    (7.6.5.)

    где n дис. и c дис. - соответственно, количество и молярная концентрация растворенного вещества, подвергшегося электролитической диссоциации.

    К сильным электролитам условно относят вещества, кажущаяся степень диссоциации которых в растворе превышает 30% ( > 0,3). При  < 3% ( < 0,03) электролиты считают слабыми, в других случаях о них говорят как об электролитах средней силы.

    Степень диссоциации обычно определяют по данным измерения электропроводности растворов, которая прямо пропорциональна концентрации свободно движущихся ионов. При этом получают не истинные значения , а кажущиеся значения. Они всегда меньше истинных значений , т.к. ионы при движении к электродам сталкиваются и частично уменьшают свою подвижность, особенно при высокой их концентрации в растворе, когда возникает электростатическое притяжение между ионами. Например, истинное значение степени электролитической диссоциации HCl в разбавленном растворе равно 1, в 1 М растворе  = 0,78 (78%) при 18 0 С, однако, в этом растворе не содержится 22% недиссоциированных молекул HCl, практически все молекулы диссоциированы.

    Электролиты, которые в разбавленном водном растворе диссоциируют практически полностью, называют сильными электролитами .

    К сильным электролитам в водных растворах принадлежат почти все соли, многие неорганические кислоты (H 2 SO 4 , HNO 3 , HClO 4 , галогеноводородные, кроме HF и др.), гидроксиды s-элементов (исключение - Be(OH) 2 и Mg(OH) 2). Кажущиеся значения a этих электролитов находятся в пределах от 70 до 100%. Диссоциация сильных электролитов - это практически необратимый процесс :

    HCl  H + + Cl - или HCl = H + + Cl -

    кислоты - это вещества, диссоциирующие в водном растворе с образованием катионов водорода и анионов кислотного остатка, основания - это вещества, диссоциирующие в водном растворе с образованием гидроксид-ионов OH - и катионов металла .

    Слабые многоосновные кислоты диссоциируют ступенчато. Каждую ступень характеризуют своим значением константы диссоциации, например:

    В связи со ступенчатой диссоциацией многоосновные кислоты способны образовывать кислые соли , NaHSO 4 , NaHCO 3 , K 2 HPO 4 и т.д.

    Слабые многокислотные основания диссоциируют ступенчато:

    Этим объясняют способность многокислотных оснований образовывать основные соли : CuOHCl, (ZnOH) 2 SO 4 и др.

    Электролиты, которые в разбавленном водном растворе диссоциируют частично, называют слабыми. Диссоциация слабых электролитов - обратимый процесс

    например:

    Степень электролитической диссоциации зависит от:

      природы электролита и растворителя;

      концентрации раствора;

      температуры

    и возрастает при увеличении разбавления раствора :

    Степень диссоциации возрастает при увеличении температуры раствора. Увеличение кинетической энергии растворенных частиц способствует распаду молекул на ионы, что приводит к возрастанию степени диссоциации при нагревании растворов.

    Если в растворе слабой кислоты или слабого основания увеличить концентрацию одноименного иона введением соответствующей соли, то наблюдается резкое изменение степени диссоциации слабого электролита. Рассмотрим, например, как изменится  уксусной кислоты (CH3COOH) при введении в раствор ацетата натрия (введение одноименных ионов CH3COO-).

    Согласно принципу Ле Шателье равновесие процесса диссоциации

    сместится влево в результате увеличения концентрации ацетат-ионов CH 3 COO - , образующихся при диссоциации ацетата натрия:

    CH 3 COONa  CH 3 COO - + Na + .

    Такое смещение равновесия в сторону образования CH 3 COOH означает уменьшение степени ее диссоциации и приводит к уменьшению концентрации ионов водорода, например:

    Таким образом, в результате введения в 1 л 0,01 М раствора CH 3 COOH 0,01 моль CH 3 COONa концентрация ионов водорода уменьшилась в

    .

    С точки зрения теории электролитической диссоциации амфотерные гидроксиды (амфолиты) - это вещества, диссоциирующие в водном растворе как по типу кислот, так и по типу оснований . К ним относят Be(OH) 2 , Zn(OH) 2 , Pb(OH) 2 , Sn(OH) 2 , Al(OH) 3 , Cr(OH) 3 , и др. Например, уравнения электролитической диссоциации Be(OH) 2:

    1) диссоциация по типу основания:

    Be(OH) 2 + 3H 2 O  OH - +

    H 2 O  OH - +

    2) диссоциация по типу кислоты:

    Be(OH) 2 + 2H 2 O  H + +

     H + +

    Между константой и степенью диссоциации существует определенная закономерность, которую в 1888г.обнаружил В.Оствальд и сумел ее объяснить. Эта закономерность впоследствии была названа законом разведения Оствальда.

    Экспериментальное установление правильности закона разбавления Оствальда имело большое значение для обоснования теории электролитической диссоциации.

    K д связана спростой зависимостью. Если общую молярную концентрацию электролита в растворе обозначить С КА, то для бинарных электролитов концентрации ионов K y+ и A x- будут равны·C KA . Очевидно, что

    = = ·C KA ,

    C KA - ·C KA = C KA· (1-), тогда

    (7.6.6.)

    Для слабых электролитов   0 и (1 - )  1. Следовательно,

    (7.6.7.)

    Полученная зависимость является математическим выражением закона разбавления Оствальда :

    степень диссоциации слабого электролита увеличивается при разбавлении раствора обратно пропорционально корню квадратному из его молярной концентрации .

    Понравилась статья? Поделиться с друзьями: