Лежит правильный четырехугольник квадрат. Правильный четырёхугольник

И снова вопрос: ромб - это параллелограмм или нет?

С полным правом - параллелограмм , потому что у него и (вспоминаем наш признак 2 ).

И снова, раз ромб - параллелограмм , то он обязан обладать всеми свойствами параллелограмма. Это означает, что у ромба противоположные углы равны, противоположные стороны параллельны, а диагонали делятся точкой пересечения пополам.

Свойства ромба

Посмотри на картинку:

Как и в случае с прямоугольником, свойства эти - отличительные , то есть по каждому из этих свойств можно заключить, что перед нами не просто параллелограмм , а именно ромб.

Признаки ромба

И снова обрати внимание : должен быть не просто четырехугольник, у которого перпендикулярны диагонали, а именно параллелограмм . Убедись:

Нет, конечно, хотя его диагонали и перпендикулярны, а диагональ - биссектриса углов и. Но … диагонали не делятся, точкой пересечения пополам, поэтому - НЕ параллелограмм , а значит, и НЕ ромб .

То есть квадрат - это прямоугольник и ромб одновременно. Давай посмотрим, что из этого получится.

Понятно почему? - ромб - биссектриса угла A, который равен. Значит делит (да и тоже) на два угла по.

Ну, это совсем ясно: прямоугольник диагонали равны; ромб диагонали перпендикулярны, и вообще - параллелограмм диагонали делятся точкой пересечения пополам.

СРЕДНИЙ УРОВЕНЬ

Свойства четырехугольников. Параллелограмм

Свойства параллелограмма

Внимание! Слова «свойства параллелограмма » означают, что если у тебя в задаче есть параллелограмм, то всем нижеследующим можно пользоваться.

Теорема о свойствах параллелограмма.

В любом параллелограмме:

Давай-ка поймём, почему это всё верно, иными словами ДОКАЖЕМ теорему.

Итак, почему верно 1)?

Раз - параллелограмм, то:

  • как накрест лежащие
  • как накрест лежащие.

Значит, (по II признаку: и - общая.)

Ну вот, а раз, то и - всё! - доказали.

Но кстати! Мы ещё доказали при этом и 2)!

Почему? Но ведь (смотри на картинку), то есть, а именно потому, что.

Осталось только 3).

Для этого всё-таки придётся провести вторую диагональ.

И теперь видим, что - по II признаку (угла и сторона «между» ними).

Свойства доказали! Перейдём к признакам.

Признаки параллелограмма

Напомним, что признак параллелограмма отвечает на вопрос "как узнать?", что фигура является параллелограммом.

В значках это так:

Почему? Хорошо бы понять, почему - этого хватит. Но смотри:

Ну вот и разобрались, почему признак 1 верен.

Ну, это ещё легче! Снова проведём диагональ.

А значит:

И тоже несложно. Но …по-другому!

Значит, . Ух! Но и - внутренние односторонние при секущей!

Поэтому тот факт, что означает, что.

А если посмотришь с другой стороны, то и - внутренние односторонние при секущей! И поэтому.

Видишь, как здорово?!

И опять просто:

Точно так же, и.

Обрати внимание: если ты нашел хотя бы один признак параллелограмма в своей задаче, то у тебя точно параллелограмм, и ты можешь пользоваться всеми свойствами параллелограмма.

Для полной ясности посмотри на схему:


Свойства четырехугольников. Прямоугольник.

Свойства прямоугольника:

Пункт 1) совсем очевидный - ведь просто выполнен признак 3 ()

А пункт 2) - очень важный . Итак, докажем, что

А значит, по двум катетам (и - общий).

Ну вот, раз треугольники и равны, то у них и гипотенузы и тоже равны.

Доказали, что!

И представь себе, равенство диагоналей - отличительное свойство именно прямоугольника среди всех параллелограммов. То есть верно такое утверждение^

Давай поймём, почему?

Значит, (имеются в виду углы параллелограмма). Но ещё раз вспомним, что - параллелограмм, и поэтому.

Значит, . Ну и, конечно, из этого следует, что каждый из них по! Ведь в сумме-то они должны давать!

Вот и доказали, что если у параллелограмма вдруг (!) окажутся равные диагонали, то это точно прямоугольник .

Но! Обрати внимание! Речь идёт о параллелограммах ! Не любой четырехугольник с равными диагоналями - прямоугольник, а только параллелограмм!

Свойства четырехугольников. Ромб

И снова вопрос: ромб - это параллелограмм или нет?

С полным правом - параллелограмм, потому что у него и (Вспоминаем наш признак 2).

И снова, раз ромб - параллелограмм, то он обязан обладать всеми свойствами параллелограмма. Это означает, что у ромба противоположные углы равны, противоположные стороны параллельны, а диагонали делятся точкой пересечения пополам.

Но есть и особенные свойства. Формулируем.

Свойства ромба

Почему? Ну, раз ромб - это параллелограмм, то его диагонали делятся пополам.

Почему? Да, потому же!

Иными словами, диагонали и оказались биссектрисами углов ромба.

Как в случае с прямоугольником, свойства эти - отличительные , каждые из них является ещё и признаком ромба.

Признаки ромба.

А это почему? А посмотри,

Значит, и оба этих треугольника - равнобедренные.

Чтобы быть ромбом, четырёхугольник сперва должен «стать» параллелограммом, а потом уже демонстрировать признак 1 или признак 2.

Свойства четырехугольников. Квадрат

То есть квадрат - это прямоугольник и ромб одновременно. Давай посмотрим, что из этого получится.

Понятно, почему? Квадрат - ромб - биссектриса угла, который равен. Значит делит (да и тоже) на два угла по.

Ну, это совсем ясно: прямоугольник диагонали равны; ромб диагонали перпендикулярны, и вообще - параллелограмм диагонали делятся точкой пересечения пополам.

Почему? Ну, просто применим теорему Пифагора к.

КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Свойства параллелограмма:

  1. Противоположные стороны равны: , .
  2. Противоположные углы равны: , .
  3. Углы при одной стороне составляют в сумме: , .
  4. Диагонали делятся точкой пересечения пополам: .

Свойства прямоугольника:

  1. Диагонали прямоугольника равны: .
  2. Прямоугольник - параллелограмм (для прямоугольника выполняются все свойства параллелограмма).

Свойства ромба:

  1. Диагонали ромба перпендикулярны: .
  2. Диагонали ромба являются биссектрисами его углов: ; ; ; .
  3. Ромб - параллелограмм (для ромба выполняются все свойства параллелограмма).

Свойства квадрата:

Квадрат - ромб и прямоугольник одновременно, следовательно для квадрата выполняются все свойства прямоугольника и ромба. А так же.

|
в выпуклом четырёхугольник, четырёхугольник
равнобедренная трапеция
равнобокая

Это геометрическая фигура (многоугольник), состоящая из четырёх точек (вершин), никакие три из которых не лежат на одной прямой, и четырёх отрезков (сторон), попарно соединяющих эти точки. Различают выпуклые и невыпуклые четырёхугольники, невыпуклый четырёхугольник может быть самопересекающимся (см. рис.).

  • 1 Виды четырёхугольников
  • 2 Четырёхсторонник
  • 3 Свойства
  • 4 Площадь
    • 4.1 Особые случаи
    • 4.2 История
  • 5 См. также
  • 6 Примечания
  • 7 Литература

Виды четырёхугольников

  1. Параллелограмм - четырёхугольник, у которого все противоположные стороны попарно равны и параллельны;
    • Прямоугольник - четырёхугольник, у которого все углы прямые;
    • Ромб - четырёхугольник, у которого все стороны равны;
    • Квадрат - четырёхугольник, у которого все углы прямые и все стороны равны;
  2. Трапеция - четырёхугольник, у которого две противоположные стороны параллельны;
  3. Дельтоид - четырёхугольник, у которого две пары смежных сторон равны.

Четырёхсторонник

Хотя такое название может быть эквивалентно четырёхугольнику, в него часто вкладывают дополнительный смысл. Четвёрка прямых, никакие две из которых не параллельны и никакие три не проходят через одну точку, называется четырёхсторонником. Такая конфигурация встречается в некоторых утверждениях евклидовой геометрии (например, теорема Менелая, прямая Гаусса, прямая Обера, теорема Микеля и др.), в которых часто все прямые являются взаимозаменяемыми.

Свойства

  • Сумма углов четырёхугольника равна 2 π = 360°.
  • Около четырёхугольника можно описать окружность тогда и только тогда, когда сумма противоположных углов равна 180°

(). См. также теорема Птолемея.

  • Выпуклый четырёхугольник является описанным около окружности тогда и только тогда, когда суммы длин противоположных сторон равны ()
  • Формула Эйлера : учетверённый квадрат расстояния между серединами диагоналей равен сумме квадратов сторон четырёхугольника минус сумма квадратов его диагоналей.
  • Средние линии четырёхугольника и отрезок, соединяющий середины его диагоналей, пересекаются в одной точке и делятся ею пополам.
  • Четыре отрезка, каждый из которых соединяет вершину четырёхугольника с центроидом треугольника, образованного оставшимися тремя вершинами, пересекаются в центроиде четырёхугольника и делятся им в отношении 3:1, считая от вершин.
  • Две противоположные стороны четырёхугольника перпендикулярны тогда и только тогда, когда сумма квадратов двух других противоположных сторон равна сумме квадратов диагоналей.
  • Диагонали четырёхугольника перпендикулярны тогда и только тогда, когда суммы квадратов противоположных сторон равны.
  • Средние линии четырёхугольника равны тогда и только тогда, когда равны суммы квадратов его противоположных сторон.
  • См. также свойства центроида четырёхугольника.
  • Шесть расстояний между четырьмя произвольными точками плоскости, взятыми попарно, связаны соотношением:
.

Это соотношение можно представить в виде определителя:

Площадь

Площадь произвольного не самопересекающегося четырёхугольника с диагоналями, и углом между ними (или их продолжениями), равна:

Площадь произвольного выпуклого четырёхугольника равна:

  • , где, - длины диагоналей, a, b, c, d - длины сторон.
  • : где p - полупериметр, а есть полусумма противоположных углов четырёхугольника. (Какую именно пару противоположных углов взять роли не играет, так как если полусумма одной пары противоположных углов равна, то полусумма двух других углов будет и). Из этой формулы для вписанных 4-угольников следует формула Брахмагупты.

Особые случаи

Если 4-угольник и вписан, и описан, то.Если он описан, то площадь равна половине его периметра, умноженной на радиус вписанной окружности

История

В древности египтяне и некоторые другие народы использовали для определения площади четырёхугольника неверную формулу - произведение полусумм его противоположных сторон a, b, c, d:

.

Для непрямоугольных четырёхугольников эта формула даёт завышенное значение площади. Можно предположить, что она использовалась только для определения площади почти прямоугольных участков земли. При неточном измерении сторон прямоугольника эта формула позволяет повысить точность результата за счет усреднения исходных измерений.

См. также

  • Теорема косинусов для четырёхугольника
  • Прямая Обера
  • Соотношение Бретшнайдера

Примечания

  1. Понарин, с. 74
  2. Г. Г. Цейтен История математики в древности и в средние века, ГТТИ, М-Л, 1932.

Литература

В Викисловаре есть статья «четырёхугольник»
  • Болтянский В., Четырехугольники. Квант, № 9,1974.
  • Понарин Я. П. Элементарная геометрия. 2 тт. - М.: МЦНМО, 2004. - С. 74. - ISBN 5-94057-170-0.

в выпуклом четырёхугольник, как найти площадь четырёхугольника, площадь четырёхугольника, площадь четырёхугольника формула, четырёхугольник, четырёхугольники

Четырёхугольник Информацию О

Тема урока

  • Определение четырехугольника.

Цели урока

  • Образовательные – повторение, обобщение и проверка знаний по теме: “Четырехугольника”; выработка основных навыков.
  • Развивающие – развить внимание учащихся, усидчивость, настойчивость, логическое мышление, математическую речь.
  • Воспитательные - посредством урока воспитывать внимательное отношение друг к другу, прививать умение слушать товарищей, взаимовыручке, самостоятельность.

Задачи урока

  • Формировать навыки в построении четырехугольника с помощью масштабной линейки и чертежного треугольника.
  • Проверить умение учащихся решать задачи.

План урока

  1. Историческая справка. Неевклидова геометрия.
  2. Четырёхугольник.
  3. Виды четырёхугольников.

Неевклидова геометрия

Неевклидова геометрия, геометрия, сходная с геометрией Евклида в том, что в ней определено движение фигур, но отличающаяся от евклидовой геометрии тем, что один из пяти ее постулатов (второй или пятый) заменен его отрицанием. Отрицание одного из евклидовых постулатов (1825) явилось значительным событием в истории мысли, ибо послужило первым шагом на пути ктеории относительности.

Второй постулат Евклида утверждает, что любой отрезок прямой можно неограниченно продолжить . Евклид, по-видимому, считал, что этот постулат содержит в себе и утверждение, что прямая имеет бесконечную длину. Однако в «эллиптической» геометрии любая прямая конечна и, подобно окружности, замкнута.

Пятый постулат утверждает, что если прямая пересекает две данные прямые так, что два внутренних угла по одну сторону от нее в сумме меньше двух прямых углов, то эти две прямые, если продолжить их неограниченно, пересекутся с той стороны, где сумма этих углов меньше суммы двух прямых. Но в «гиперболической» геометрии может существовать прямая CB (см. рис.), перпендикулярная в точке С к заданной прямой r и пересекающая другую прямую s под острым углом в точке B, но, тем не менее бесконечные прямые r и s никогда не пересекутся.

Из этих пересмотренных постулатов следовало, что сумма углов треугольника, равная 180° в евклидовой геометрии, больше 180° в эллиптической геометрии и меньше 180° в гиперболической геометрии.

Четырёхугольник

Предмети > Математика > Математика 8 класс

В этой статье мы рассмотрим все основные свойства и признаки четырехугольников .

Для начала я расположу все виды четырехугольников в виде такой сводной схемы:

Схема замечательна тем, что четырехугольники, стоящие в каждой строке обладают ВСЕМИ СВОЙСТВАМИ ЧЕТЫРЕХУГОЛЬНИКОВ, РАСПОЛОЖЕННЫХ НАД НИМИ. Поэтому запоминать надо совсем немного.

Трапеция - это четырехугольник, две стороны которого параллельны, а две другие не параллельны. Параллельные стороны называются основаниями трапеции , а не параллельные - боковыми сторонами .

1 . В трапеции сумма углов, прилежащих к боковой стороне равна 180°: А+В=180°, C+D=180°

2 . Биссектриса любого угла трапеции отсекает на ее основании отрезок, равный боковой стороне:

3. Биссектрисы смежных углов трапеции пересекаются под прямым углом.


4 .Трапеция называется равнобедренной , если ее боковые стороны равны:

В равнобедренной трапеции

5. Площадь трапеции равна произведению полусуммы оснований на высоту:

Параллелограм - это четырехугольник, у которого противоположные стороны попарно параллельны: В параллелограмме:

  • противоположные стороны и противоположные углы равны
  • диагонали параллелограмма делятся точкой пересечения пополам:


Соответственно, если четырехугольник обладает этими свойствами, то он является параллелограммом.

Площадь параллелограмма равна произведению основания на высоту:

или произведению сторон на синус угла между ними:

:

Ромб - это параллелограмм, у которого все стороны равны:


  • противоположные углы равны
  • диагонали точкой пересечения делятся пополам
  • диагонали взаимно перпендикулярны
  • диагонали ромба являются биссектрисами углов

Площадь ромба равна половине произведения диагоналей:

или произведению квадрата стороны на синус угла между сторонами:

Определение. Параллелограммом называется четырехугольник, у которого противоположные стороны попарно параллельны.

Свойство. В параллелограмме противоположные стороны равны и противоположные углы равны.

Свойство. Диагонали параллелограмма точкой пересечения делятся пополам.


1 признак параллелограмма. Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник - параллелограмм.

2 признак параллелограмма. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник - параллелограмм.

3 признак параллелограмма. Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник - параллелограмм.

Определение. Трапецией называется четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны. Параллельные стороны называются основаниями.

Трапеция называется равнобедренной (равнобочной) , если ее боковые стороны равны. В равнобедренной трапеции углы при основаниях равны.

Трапеция, один из углов которой прямой, называется прямоугольной .

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции . Средняя линия параллельна основаниям и равна их полусумме.

Определение. Прямоугольником называется параллелограмм, у которого все углы прямые.

Свойство. Диагонали прямоугольника равны.

Признак прямоугольника. Если в параллелограмме диагонали равны, то этот параллелограмм - прямоугольник.

Определение. Ромбом называется параллелограмм, у которого все стороны равны.

Свойство. Диагонали ромба взаимно перпендикулярны и делят его углы пополам.

Определение. Квадратом называется прямоугольник, у которого все стороны равны.

Квадрат есть частный вид прямоугольника, а также частный вид ромба. Поэтому он имеет все их свойства.

Свойства:
1. Все углы квадрата прямые

2. Диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы квадрата пополам.

Понравилась статья? Поделиться с друзьями: