Химические свойства водорода уравнения реакций. Водород

В периодической системе водород располагается в двух абсолютно противоположных по своим свойствам группах элементов. Данная особенность делают его совершенно уникальным. Водород не просто представляет собой элемент или вещество, но также является составной частью многих сложных соединений, органогенным и биогенным элементом. Поэтому рассмотрим его свойства и характеристики более подробно.


Выделение горючего газа в процессе взаимодействия металлов и кислот наблюдали еще в XVI веке, то есть во время становления химии как науки. Известный английский ученый Генри Кавендиш исследовал вещество, начиная с 1766 года, и дал ему название «горючий воздух». При сжигании этот газ давал воду. К сожалению, приверженность ученого теории флогистона (гипотетической «сверхтонкой материи») помешала ему прийти к правильным выводам.

Французский химик и естествоиспытатель А. Лавуазье вместе с инженером Ж. Менье и при помощи специальных газометров в 1783 г. провел синтез воды, а после и ее анализ посредством разложения водяного пара раскаленным железом. Таким образом, ученые смогли прийти к правильным выводам. Они установили, что «горючий воздух» не только входит в состав воды, но и может быть получен из нее.

В 1787 году Лавуазье выдвинул предположение, что исследуемый газ является простым веществом и, соответственно, относится к числу первичных химических элементов. Он назвал его hydrogene (от греческих слов hydor - вода + gennao - рождаю), т. е. «рождающий воду».

Русское название «водород» в 1824 году предложил химик М. Соловьев. Определение состава воды ознаменовало конец «теории флогистона». На стыке XVIII и XIX веков было установлено, что атом водорода очень легкий (по сравнению с атомами прочих элементов) и его масса была принята за основную единицу сравнения атомных масс, получив значение, равное 1.

Физические свойства

Водород является легчайшим из всех известных науке веществ (он в 14,4 раз легче воздуха), его плотность составляет 0,0899 г/л (1 атм, 0 °С). Данный материал плавится (затвердевает) и кипит (сжижается), соответственно, при -259,1 °С и -252,8 °С (только гелий обладает более низкими t° кипения и плавления).

Критическая температура водорода крайне низка (-240 °С). По этой причине его сжижение - довольно сложный и затратный процесс. Критическое давление вещества - 12,8 кгс/см², а критическая плотность составляет 0,0312 г/см³. Среди всех газов водород имеет наибольшую теплопроводность: при 1 атм и 0 °С она равняется 0,174 вт/(мхК).

Удельная теплоемкость вещества в тех же условиях - 14,208 кДж/(кгхК) или 3,394 кал/(гх°С). Данный элемент слабо растворим в воде (около 0,0182 мл/г при 1 атм и 20 °С), но хорошо - в большинстве металлов (Ni, Pt, Pa и прочих), особенно в палладии (примерно 850 объемов на один объем Pd).

С последним свойством связана его способность диффундирования, при этом диффузия через углеродистый сплав (к примеру, сталь) может сопровождаться разрушением сплава из-за взаимодействия водорода с углеродом (этот процесс называется декарбонизация). В жидком состоянии вещество очень легкое (плотность - 0,0708 г/см³ при t° = -253 °С) и текучее (вязкость - 13,8 спуаз в тех же условиях).

Во многих соединениях этот элемент проявляет валентность +1 (степень окисления), подобно натрию и прочим щелочным металлам. Обычно он рассматривается в качестве аналога этих металлов. Соответственно он возглавляет I группу системы Менделеева. В гидридах металлов ион водорода проявляет отрицательный заряд (степень окисления при этом -1), то есть Na+H- имеет структуру, подобную хлориду Na+Cl-. В соответствии с этим и некоторыми другими фактами (близость физических свойств элемента «H» и галогенов, способность его замещения галогенами в органических соединениях) Hydrogene относят к VII группе системы Менделеева.

В обычных условиях молекулярный водород имеет низкую активность, непосредственно соединяясь только с самыми активными из неметаллов (с фтором и хлором, с последним - на свету). В свою очередь, при нагревании он взаимодействует со многими химическими элементами.

Атомарный водород имеет повышенную химическую активность (если сравнивать с молекулярным). С кислородом он образует воду по формуле:

Н₂ + ½О₂ = Н₂О,

выделяя 285,937 кДж/моль тепла или 68,3174 ккал/моль (25 °С, 1 атм). В обычных температурных условиях реакция протекает довольно медленно, а при t° >= 550 °С - неконтролируемо. Пределы взрывоопасности смеси водород + кислород по объему составляют 4–94 % Н₂, а смеси водород + воздух - 4–74 % Н₂ (смесь из двух объемов Н₂ и одного объема О₂ называют гремучим газом).

Данный элемент используют для восстановления большинства металлов, так как он отнимает кислород у оксидов:

Fe₃O₄ + 4H₂ = 3Fe + 4Н₂О,

CuO + H₂ = Cu + H₂O и т. д.

С разными галогенами водород образует галогеноводороды, к примеру:

Н₂ + Cl₂ = 2НСl.

Однако при реакции с фтором водород взрывается (это происходит и в темноте, при -252 °С), с бромом и хлором реагирует только при нагревании или освещении, а с йодом - исключительно при нагревании. При взаимодействии с азотом образуется аммиак, но лишь на катализаторе, при повышенных давлениях и температуре:

ЗН₂ + N₂ = 2NН₃.

При нагревании водород активно реагирует с серой:

Н₂ + S = H₂S (сероводород),

и значительно труднее - с теллуром или селеном. С чистым углеродом водород реагирует без катализатора, но при высоких температурах:

2Н₂ + С (аморфный) = СН₄ (метан).

Данное вещество непосредственно реагирует с некоторыми из металлов (щелочными, щелочноземельными и прочими), образуя гидриды, например:

Н₂ + 2Li = 2LiH.

Немаловажное практическое значение имеют взаимодействия водорода и оксида углерода (II). При этом в зависимости от давления, температуры и катализатора образуются разные органические соединения: НСНО, СН₃ОН и пр. Ненасыщенные углеводороды в процессе реакции переходят в насыщенные, к примеру:

С n Н₂ n + Н₂ = С n Н₂ n ₊₂.

Водород и его соединения играют в химии исключительную роль. Он обусловливает кислотные свойства т. н. протонных кислот, склонен образовывать с разными элементами водородную связь, оказывающую значительное влияние на свойства многих неорганических и органических соединений.

Получение водорода

Основными видами сырья для промышленного производства этого элемента являются газы нефтепереработки, природные горючие и коксовые газы. Его также получают из воды посредством электролиза (в местах с доступной электроэнергией). Одним из важнейших методов производства материала из природного газа считается каталитическое взаимодействие углеводородов, в основном метана, с водяным паром (т. н. конверсия). Например:

СН₄ + H₂О = СО + ЗН₂.

Неполное окисление углеводородов кислородом:

СН₄ + ½О₂ = СО + 2Н₂.

Синтезированный оксид углерода (II) подвергается конверсии:

СО + Н₂О = СО₂ + Н₂.

Водород, производимый из природного газа, является самым дешевым.

Для электролиза воды применяется постоянный ток, который пропускается через раствор NaOH или КОН (кислоты не используют во избежание коррозии аппаратуры). В лабораторных условиях материал получают электролизом воды или в результате реакции между соляной кислотой и цинком. Однако чаще применяют готовый заводской материал в баллонах.

Из газов нефтепереработки и коксового газа данный элемент выделяют путем удаления всех остальных компонентов газовой смеси, так как они легче сжижаются при глубоком охлаждении.

Промышленным образом этот материал стали получать еще в конце XVIII века. Тогда его использовали для наполнения воздушных шаров. На данный момент водород широко применяют в промышленности, главным образом - в химической, для производства аммиака.

Массовые потребители вещества - производители метилового и прочих спиртов, синтетического бензина и многих других продуктов. Их получают синтезом из оксида углерода (II) и водорода. Hydrogene используют для гидрогенизации тяжелого и твердого жидкого топлива, жиров и пр., для синтеза HCl, гидроочистки нефтепродуктов, а также в резке/сварке металлов. Важнейшими элементами для атомной энергетики являются его изотопы - тритий и дейтерий.

Биологическая роль водорода

Около 10 % массы живых организмов (в среднем) приходится на этот элемент. Он входит в состав воды и важнейших групп природных соединений, включая белки, нуклеиновые кислоты, липиды, углеводы. Для чего он служит?

Этот материал играет решающую роль: при поддержании пространственной структуры белков (четвертичной), в осуществлении принципа комплиментарности нуклеиновых кислот (т. е. в реализации и хранении генетической информации), вообще в «узнавании» на молекулярном уровне.

Ион водорода Н+ принимает участие в важных динамических реакциях/процессах в организме. В том числе: в биологическом окислении, которое обеспечивает живые клетки энергией, в реакциях биосинтеза, в фотосинтезе у растений, в бактериальном фотосинтезе и азотфиксации, в поддержании кислотно-щелочного баланса и гомеостаза, в мембранных процессах транспорта. Наряду с углеродом и кислородом он образует функциональную и структурную основы явлений жизни.

  • История открытия водорода

    Если является самым распространенным химическим элементом на Земле, то водород – самый распространенный элемент во всей Вселенной. Наше (и другие звезды) примерно на половину состоит из водорода, а что касается межзвездного газа, то он на 90% состоит из атомов водорода. Немалое место этот химический элемент занимает и на Земле, ведь вместе с кислородом он входит в состав воды, а само его название «водород» происходит от двух древнегреческих слов: «вода» и «рожаю». Помимо воды водород присутствует в большинстве органических веществ и клеток, без него, как и без кислорода, была бы немыслима сама Жизнь.

    История открытия водорода

    Первым среди ученых водород заметил еще великий алхимик и лекарь средневековья Теофраст Парацельс. В своих алхимических опытах, в надежде отыскать «философский камень» смешивая с кислотами Парацельс получил некий неизвестный до того горючий газ. Правда отделить этот газ от воздуха так и не удалось.

    Только спустя полтора века после Парацельса французскому химику Лемери таки удалось отделить водород от воздуха и доказать его горючесть. Правда Лемери так и не понял, что полученный им газ является чистым водородом. Параллельно подобными химическими опытами занимался и русский ученый Ломоносов, но настоящий прорыв в исследовании водорода был сделан английским химиком Генри Кавендишом, которого по праву считают первооткрывателем водорода.

    В 1766 году Кавендишу удалось получить чистый водород, который он называл «горючим воздухом». Еще через 20 лет талантливый французский химик Антуан Лавуазье смог синтезировать воду и выделить из нее этот самый «горючий воздух» – водород. И к слову именно Лавуазье предложил водороду его название – «Hydrogenium», он же «водород».

    Антуан Лавуазье со своей женой, помогавшей ему проводить химические опыты, в том числе и по синтезу водорода.

    В основе расположения химических элементов в периодической системе Менделеева лежит их атомный вес, рассчитанный относительно атомного веса водорода. То есть иными словами водород и его атомный вес является краеугольным камнем таблицы Менделеева, той точкой опоры, на основе которой великий химик создал свою систему. Поэтому не удивительно, что в таблице Менделеева водород занимает почетное первое место.

    Помимо этого водород имеет такие характеристики:

    • Атомная масса водорода составляет 1,00795.
    • У водорода в наличии три изотопа, каждый из которых обладает индивидуальными свойствами.
    • Водород – легкий элемент имеющий малую плотность.
    • Водород обладает восстановительными и окислительными свойствами.
    • Вступая в с металлами, водород принимает их электрон и стает окислителем. Подобные соединения называются гидратами.

    Водород это газ, молекула его состоит из двух атомов.

    Так схематически выглядит молекула водорода.

    Молекулярный водород, образованный из таких вот двухатомных молекул взрывается при поднесенной горящей спичке. Молекула водорода при взрыве распадается на атомы, которые превращаются в ядра гелия. Именно таким образом происходят на Солнце и других звездах – за счет постоянного распадение молекул водорода наше светило горит и обогревает нас своим теплом.

    Физические свойства водорода

    У водорода в наличие следующие физические свойства:

    • Температура кипения водорода составляет 252,76 °C;
    • А при температуре 259,14 °C он уже начинает плавиться.
    • В воде водород растворяется слабо.
    • Чистый водород – весьма опасное взрывчатое и горючее вещество.
    • Водород легче воздуха в 14,5 раз.

    Химические свойства водорода

    Поскольку водород может быть в разных ситуациях и окислителем и восстановителем его используют для осуществления реакций и синтезов.

    Окислительные свойства водорода взаимодействуют с активными (обычно щелочными и щелочноземельными) металлами, результатом этих взаимодействий является образование гидридов – солеподобных соединений. Впрочем, гидриды образуются и при реакциях водорода с малоактивными металлами.

    Восстановительные свойства водорода обладают способностью восстанавливать металлы до простых веществ из их оксидов, в промышленности это называется водородотермией.

    Как получить водород?

    Среди промышленных средств получения водорода можно выделить:

    • газификацию угля,
    • паровую конверсию метана,
    • электролиз.

    В лаборатории водород можно получить:

    • при гидролизе гидридов металлов,
    • при реакции с водой щелочных и щелочноземельных металлов,
    • при взаимодействии разбавленных кислот с активными металлами.

    Применение водорода

    Так как водород в 14 раз легче воздуха, то в былые времена им начиняли воздушные шары и дирижабли. Но после серии катастроф произошедших с дирижаблями конструкторам пришлось искать водороду замену (напомним, чистый водород – взрывоопасное вещество, и малейшей искры было достаточно, чтобы случился взрыв).

    Взрыв дирижабля Гинденбург в 1937 году, причиной взрыва как раз и стало воспламенение водорода (вследствие короткого замыкания), на котором летал этот огромный дирижабль.

    Поэтому для подобных летательных аппаратов вместо водорода стали использовать гелий, который также легче воздуха, получение гелия более трудоемкое, зато он не такой взрывоопасный как водород.

    Также с помощью водорода производится очистка различных видов топлива, в особенности на основе нефти и нефтепродуктов.

    Водород, видео

    И в завершение образовательное видео по теме нашей статьи.


  • Водород является самым первым элементом в Периодической системе химических элементов, имеет атомный номер 1 и относительную атомную массу 1,0079. Каковы физические свойства водорода?

    Физические свойства водорода

    В переводе с латыни водород означает «рождающий воду». Еще в 1766 году английский ученый Г. Кавендиш собрал выделяющийся при действии кислот на металлы «горючий воздух» и стал исследовать его свойства. В 1787 году А. Лавуазье определил этот «горючий воздух» как новый химический элемент, который входит в состав воды.

    Рис. 1. А. Лавуазье.

    У водорода существуют 2 стабильных изотопа – протий и дейтерий, а также радиоактивный – тритий, количество которого на нашей планете очень мало.

    Водород является самым распространенным элементом в космосе. Солнце и большинство звезд имеют водород в своем составе в качестве основного элемента. Также этот газ входит в состав воды, нефти, природного газа. Общее содержание водорода на Земле составляет 1%.

    Рис. 2. Формула водорода.

    В состав атома этого вещества входит ядро и один электрон. Когда у водорода теряется электрон, он образует положительно заряженный ион, то есть проявляет металлические свойства. Но также атом водорода способен не только терять, но и присоединять электрон. В этом он очень похож на галогены. Поэтому водород в Периодической системе относится и к I и к VII группе. Неметаллические свойства водорода выражены у него в большей степени.

    Молекула водорода состоит из двух атомов, связанных между собой ковалентной связью

    Водород при обычных условиях является бесцветным газообразным элементом, который не имеет запаха и вкуса. Он в 14 раз легче воздуха, а его температура кипения составляет -252,8 градусов по Цельсию.

    Таблица «Физические свойства водорода»

    Кроме физических свойств водород обладает и рядом химических свойств. водород при нагревании или под действием катализаторов вступает в реакции с металлами и неметаллами, серой, селеном, теллуром, а также может восстанавливать оксиды многих металлов.

    Получение водорода

    Из промышленных способов получения водорода (кроме электролиза водных растворов солей) следует отметить следующие:

    • пропускание паров воды через раскаленный уголь при температуре 1000 градусов:
    • конверсия метана водяным паром при температуре 900 градусов:

    CH 4 +2H 2 O=CO 2 +4H 2

    • Обозначение - H (Hydrogen);
    • Латинское название - Hydrogenium;
    • Период - I;
    • Группа - 1 (Ia);
    • Атомная масса - 1,00794;
    • Атомный номер - 1;
    • Радиус атома = 53 пм;
    • Ковалентный радиус = 32 пм;
    • Распределение электронов - 1s 1 ;
    • t плавления = -259,14°C;
    • t кипения = -252,87°C;
    • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 2,02/-;
    • Степень окисления: +1; 0; -1;
    • Плотность (н. у.) = 0,0000899 г/см 3 ;
    • Молярный объем = 14,1 см 3 /моль.

    Бинарные соединения водорода с кислородом:

    Водород ("рождающий воду") был открыт английским ученым Г. Кавендишем в 1766 году. Это самый простой элемент в природе - атом водорода имеет ядро и один электрон, наверное, по этой причине водород является самым распространенным элементом во Вселенной (составляет более половины массы большинства звезд).

    Про водород можно сказать, что "мал золотник, да дорог". Несмотря на свою "простоту", водород дает энергию всем живым существам на Земле - на Солнце идет непрерывная термоядерная реакция в ходе которой из четырех атомов водорода образуется один атом гелия, данный процесс сопровождается выделением колоссального количества энергии (подробнее см. Ядерный синтез).

    В земной коре массовая доля водорода составляет всего 0,15%. Между тем, подавляющее число (95%) всех известных на Земле химических веществ содержат один или несколько атомов водорода.

    В соединениях с неметаллами (HCl, H 2 O, CH 4 ...) водород отдает свой единственный электрон более электроотрицательным элементам, проявляя степень окисления +1 (чаще), образуя только ковалентные связи (см. Ковалентная связь).

    В соединениях с металлами (NaH, CaH 2 ...) водород, наоборот, принимает на свою единственную s-орбиталь еще один электрон, пытаясь, таким образом, завершить свой электронный слой, проявляя степень окисления -1 (реже), образуя чаще ионную связь (см. Ионная связь), т. к., разность в электроотрицательности атома водорода и атома металла может быть достаточно большой.

    H 2

    В газообразном состоянии водород находится в виде двухатомных молекул, образуя неполярную ковалентную связь.

    Молекулы водорода обладают:

    • большой подвижностью;
    • большой прочностью;
    • малой поляризуемостью;
    • малыми размерами и массой.

    Свойства газа водорода:

    • самый легкий в природе газ, без цвета и запаха;
    • плохо растворяется в воде и органических растворителях;
    • в незначительных кол-вах растворяется в жидких и твердых металлах (особенно в платине и палладии);
    • трудно поддается сжижению (по причине своей малой поляризуемости);
    • обладает самой высокой теплопроводностью из всех известных газов;
    • при нагревании реагирует со многими неметаллами, проявляя свойства восстановителя;
    • при комнатной температуре реагирует со фтором (происходит взрыв): H 2 + F 2 = 2HF;
    • с металлами реагирует с образованием гидридов, проявляя окислительные свойства: H 2 + Ca = CaH 2 ;

    В соединениях водород гораздо сильнее проявляет свои восстановительные свойства, чем окислительные. Водород является самым сильным восстановителем после угля, алюминия и кальция. Восстановительные свойства водорода широко используются в промышленности для получения металлов и неметаллов (простых веществ) из оксидов и галлидов.

    Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O

    Реакции водорода с простыми веществами

    Водород принимает электрон, играя роль восстановителя , в реакциях:

    • с кислородом (при поджигании или в присутствии катализатора), в соотношении 2:1 (водород:кислород) образуется взрывоопасный гремучий газ: 2H 2 0 +O 2 = 2H 2 +1 O+572 кДж
    • с серой (при нагревании до 150°C-300°C): H 2 0 +S ↔ H 2 +1 S
    • с хлором (при поджигании или облучении УФ-лучами): H 2 0 +Cl 2 = 2H +1 Cl
    • с фтором : H 2 0 +F 2 = 2H +1 F
    • с азотом (при нагревании в присутствии катализаторов или при высоком давлении): 3H 2 0 +N 2 ↔ 2NH 3 +1

    Водород отдает электрон, играя роль окислителя , в реакциях с щелочными и щелочноземельными металлами с образованием гидридов металлов - солеобразные ионные соединения, содержащие гидрид-ионы H - - это нестойкие кристаллические в-ва белого цвета.

    Ca+H 2 = CaH 2 -1 2Na+H 2 0 = 2NaH -1

    Для водорода нехарактерно проявлять степень окисления -1. Реагируя с водой, гидриды разлагаются, восстанавливая воду до водорода. Реакция гидрида кальция с водой имеет следующий вид:

    CaH 2 -1 +2H 2 +1 0 = 2H 2 0 +Ca(OH) 2

    Реакции водорода со сложными веществами

    • при высокой температуре водород восстанавливает многие оксиды металлов: ZnO+H 2 = Zn+H 2 O
    • метиловый спирт получают в результате реакции водорода с оксидом углерода (II): 2H 2 +CO → CH 3 OH
    • в реакциях гидрогенизации водород реагирует с многими органическими веществами.

    Более подробно уравнения химических реакций водорода и его соединений рассмотрены на странице "Водород и его соединения - уравнения химических реакций с участием водорода ".

    Применение водорода

    • в атомной энергетике используются изотопы водорода - дейтерий и тритий;
    • в химической промышленности водород используют для синтеза многих органических веществ, аммиака, хлороводорода;
    • в пищевой промышленности водород применяют в производстве твердых жиров посредство гидрогенизации растительных масел;
    • для сварки и резки металлов используют высокую температуру горения водорода в кислороде (2600°C);
    • при получении некоторых металлов водород используют в качестве восстановителя (см. выше);
    • поскольку водород является легким газом, его используют в воздухоплавании в качестве наполнителя воздушных шаров, аэростатов, дирижаблей;
    • как топливо водород используют в смеси с СО.

    В последнее время ученые уделяют достаточно много внимания поиску альтернативных источников возобновляемой энергии. Одним из перспективных направлений является "водородная" энергетика, в которой в качестве топлива используется водород, продуктом сгорания которого является обыкновенная вода.

    Способы получения водорода

    Промышленные способы получения водорода:

    • конверсией метана (каталитическим восстановлением водяного пара) парами воды при высокой температуре (800°C) на никелевом катализаторе: CH 4 + 2H 2 O = 4H 2 + CO 2 ;
    • конверсией оксида углерода с водяным паром (t=500°C) на катализаторе Fe 2 O 3: CO + H 2 O = CO 2 + H 2 ;
    • термическим разложением метана: CH 4 = C + 2H 2 ;
    • газификацией твердых топлив (t=1000°C): C + H 2 O = CO + H 2 ;
    • электролизом воды (очень дорогой способ при котором получается очень чистый водород): 2H 2 O → 2H 2 + O 2 .

    Лабораторные способы получения водорода:

    • действием на металлы (чаще цинк) соляной или разбавленной серной кислотой: Zn + 2HCl = ZCl 2 + H 2 ; Zn + H 2 SO 4 = ZnSO 4 + H 2 ;
    • взаимодействием паров воды с раскаленными железными стружками: 4H 2 O + 3Fe = Fe 3 O 4 + 4H 2 .
    Водород. Свойства, получение, применение.

    Историческая справка

    Водород – первый элемент ПСХЭ Д.И. Менделеева.

    Русское название водорода указывает, что он «рождает воду»; латинское «гидрогениум» означает то же самое.

    Впервые выделение горючего газа при взаимодействии некоторых металлов с кислотами наблюдали Роберт Бойль и его современники в первой половине XVI века.

    Но водород был открыт лишь в 1766 году английским химиком Генри Кавендишем, который установил, что при взаимодействии металлов с разбавленными кислотами выделяется некий «горючий воздух». Наблюдая горение водорода на воздухе, Кавендиш установил, что в результате появляется вода. Это было в 1782 году.

    В 1783 году году французский химик Антуан-Лоран Лавуазье выделил водород путем разложения воды раскаленным железом. В 1789 году водород был выделен при разложении воды под действием электрического тока.

    Распространенность в природе

    Водород – главный элемент космоса. Например, Солнце на 70 % своей массы состоит из водорода. Атомов водорода во Вселенной в несколько десятков тысяч раз больше, чем всех атомов всех металлов, вместе взятых.

    В земной атмосфере тоже есть немного водорода в виде простого вещества – газа состава Н 2 . Водород намного легче воздуха, и поэтому его находят в верхних слоях атмосферы.

    Но гораздо больше на Земле связанного водорода: ведь он входит в состав воды, самого распространенного на нашей планете сложного вещества. Водород, связанный в молекулы, содержат и нефть, и природный газ, многие минералы и горные породы. Водород входит в состав всех органических веществ.

    Характеристика элемента водорода.

    Водород имеет двойственную природу, по этой причине в одних случаях водород помещают в подгруппу щелочных металлов, а в других – в подгруппу галогенов.


    • Электронная конфигурация 1s 1 . Атом водорода состоит из одного протона и одного электрона.

    • Атом водорода способен терять электрон и превращаться в катион H + , и в этом он сходен со щелочными металлами.

    • Атом водорода также может присоединять электрон, образуя при этом анион Н - , в этом отношении водород сходен с галогенами.

    • В соединениях всегда одновалентен

    • СО: +1 и -1.

    Физические свойства водорода

    Водород – это газ, без цвета, вкуса и запаха. В 14,5 раз легче воздуха. Мало растворим в воде. Обладает высокой теплопроводностью. При t= –253 °С – сжижается, при t= –259 °С – затвердевает. Молекулы водорода настолько малы, что способны медленно диффундировать через многие материалы – резину, стекло, металлы, что используется при очистке водорода от других газов.

    Известны 3 изотопа водорода: - протий, - дейтерий, - тритий. Основную часть природного водорода составляет протий. Дейтерий входит в состав тяжелой воды, которой обогащены поверхностные воды океана. Тритий – радиоактивный изотоп.

    Химические свойства водорода

    Водород – неметалл, имеет молекулярное строение. Молекула водорода состоит из двух атомов, связанных между собой ковалентной неполярной связью. Энергия связи в молекуле водорода составляет 436 кДж/моль, что объясняет низкую химическую активность молекулярного водорода.


    1. Взаимодействие с галогенами. При обычной температуре водород реагирует лишь со фтором:
    H 2 + F 2 = 2HF.

    С хлором - только на свету, образуя хлороводород, с бромом реакция протекает менее энергично, с йодом не идет до конца даже при высоких температурах.


    1. Взаимодействие с кислородом – при нагревании, при поджигании реакция протекает со взрывом: 2H 2 + O 2 = 2H 2 O.
    Водород горит в кислороде с выделением большого количества тепла. Температура водородно-кислородного пламени 2800 °С.

    Смесь из 1 части кислорода и 2 частей водорода – «гремучая смесь», наиболее взрывоопасна.


    1. Взаимодействие с серой – при нагревании H 2 + S = H 2 S.

    2. Взаимодействие с азотом. При нагревании, высоком давлении и в присутствии катализатора:
    3H 2 + N 2 = 2NH 3 .

    1. Взаимодействие с оксидом азота (II). Используется в очистительных системах при производстве азотной кислоты: 2NO + 2H 2 = N 2 + 2H 2 O.

    2. Взаимодействие с оксидами металлов. Водород – хороший восстановитель, он восстанавливает многие металлы из их оксидов: CuO + H 2 = Cu + H 2 O.

    3. Сильным восстановителем является атомарный водород. Он образуется из молекулярного в электрическом разряде в условиях низкого давления. Высокой восстановительной активностью обладает водород в момент выделения , образующийся при восстановлении металла кислотой.

    4. Взаимодействие с активными металлами . При высокой температуре соединяется с щелочными и щелочно-земельными металлам и образуя белые кристаллические вещества – гидриды металлов, проявляя свойства окислителя: 2Na + H 2 = 2NaH;
    Ca + H 2 = CaH 2 .

    Получение водорода

    В лаборатории:


    1. Взаимодействие металла с разбавленными растворами серной и соляной кислот,
    Zn + 2HCl = ZnCl 2 + H 2 .

    1. Взаимодействие алюминия или кремния с водными растворами щелочей:
    2Al + 2NaOH + 10H 2 O = 2Na + 3H 2 ;

    Si + 2NaOH + H 2 O = Na 2 SiO 3 + 2H 2 .

    В промышленности:


    1. Электролиз водных растворов хлоридов натрия и калия или электролиз воды при присутствии гидроксидов:
    2NaCl + 2H 2 O = H 2 + Cl 2 + 2NaOH;

    2Н 2 О = 2Н 2 + О 2 .


    1. Конверсионный способ. Вначале получают водяной газ, пропуская пары воды через раскаленный кокс при 1000 °С:
    С + Н 2 О = СО + Н 2 .

    Затем оксид углерода (II) окисляют в оксид углерода (IV), пропуская смесь водяного газа с избытком паров воды над нагретым до 400–450 °С катализатором Fe 2 O 3:

    CO +H 2 O = CO 2 + H 2 .

    Образующийся оксид углерода (IV) поглощается водой, этим способом получают 50 % промышленного водорода.


    1. Конверсия метана: CH 4 + H 2 O = CO + 3H 2 .
    Реакция протекает в присутствии никелевого катализатора при 800 °С.

    1. Термическое разложение метана при 1200 °С: CH 4 = C + 2H 2 .

    2. Глубокое охлаждение (до -196 °С) коксового газа. При этой температуре конденсируются все газообразные вещества, кроме водорода.
    Применение водорода

    Применение водорода основано на его физических и химических свойствах:


    • как легкий газ, он используется для наполнения аэростатов (в смеси с гелием);

    • кислородно-водородное пламя применяется для получения высоких температур при сварки металлов;

    • как восстановитель используется для получения металлов (молибдена, вольфрама и др.) из их оксидов;

    • для получения аммиака и искусственного жидкого топлива, для гидрогенизации жиров.
    Понравилась статья? Поделиться с друзьями: