Окисление простых веществ в кислороде. Кислород: химические свойства элемента

Кислород вступает в соединения почти со всеми элементами периодической системы Менделеева.

Реакция соединения любого вещества с кислородом называется окислением .

Большинство таких реакций идет с выделением тепла. Если при реакции окисления одновременно с теплом выделяется свет, ее называют горением . Однако не всегда удается заметить выделяющиеся тепло и свет, так как в некоторых случаях окисление идет чрезвычайно медленно. Заметить тепловыделение удается тогда, когда реакция окисления происходит быстро.

В результате любого окисления - быстрого или медленного - в большинстве случаев образуются окислы: соединения металлов, углерода, серы, фосфора и других элементов с кислородом.

Вам, вероятно, не раз приходилось видеть, как перекрывают железные крыши. Перед тем как покрыть их новым железом, старое сбрасывают вниз. На землю вместе с железом падает бурая чешуя - ржавчина. Это гидрат окиси железа, который медленно, в течение нескольких лет, образовывался на железе под действием кислорода, влаги и углекислого газа.

Ржавчину можно рассматривать как соединение окиси железа с молекулой воды. Она имеет рыхлую структуру и не предохраняет железо от разрушения.

Для предохранения железа от разрушения - коррозии - его обычно покрывают краской или другими коррозионно устойчивыми материалами: цинком, хромом, никелем и другими металлами. Предохранительные свойства этих металлов, как и алюминия, основаны на том, что они покрываются тонкой устойчивой пленкой своих окислов, предохраняющих покрытие от дальнейшего разрушения.

Предохранительные покрытия значительно замедляют процесс окисления металла.

В природе постоянно происходят процессы медленного окисления, сходные с горением.

При гниении дерева, соломы, листьев и других органических веществ происходят процессы окисления углерода, входящего в состав этих веществ. Тепло при этом выделяется чрезвычайно медленно, и поэтому обычно оно остается незамеченным.

Но иногда такого рода окислительные процессы сами по себе ускоряются и переходят в горение.

Самовозгорание можно наблюдать в стоге мокрого сена.

Быстрое окисление с выделением большого количества тепла и света можно наблюдать не только при горении дерева, керосина, свечи, масла и других горючих материалов, содержащих углерод, но и при горении железа.

Налейте в банку немного воды и наполните ее кислородом. Затем внесите в банку железную спираль, на конце которой укреплена тлеющая лучинка. Лучинка, а за ней и спираль загорятся ярким пламенем, разбрасывая во все стороны звездообразные искры.

Это идет процесс быстрого окисления железа кислородом. Он начался при высокой температуре, которую дала горящая лучинка, и продолжается до полного сгорания спирали за счет тепла, выделяющегося при горении железа.

Тепла этого так много, что образующиеся при горении частицы окисленного железа накаляются добела, ярко освещая банку.

Состав окалины, образовавшейся при горении железа, несколько иной, чем состав окисла, образовавшегося в виде ржавчины при медленном окислении железа на воздухе в присутствии влаги.

В первом случае окисление идет до закиси-окиси железа (Fe 3 O 4), входящей в состав магнитного железняка; во втором - образуется окисел, близко напоминающий бурый железняк, который имеет формулу 2Fe 2 O 3 ∙ Н 2 O.

Таким образом, в зависимости от условий, в которых протекает окисление, образуются различные окислы, отличающиеся друг от друга содержанием кислорода.

Так, например, углерод в соединении с кислородом дает два окисла - окись и двуокись углерода. При недостатке кислорода происходит неполное сгорание углерода с образованием окиси углерода (СО), которую в общежитии называют угарным газом . При полном сгорании образуется двуокись углерода, или углекислый газ (СO 2).

Фосфор, сгорая в условиях недостатка кислорода, образует фосфористый ангидрид (Р 2 O 3), а при избытке - фосфорный ангидрид (Р 2 O 5). Сера в различных условиях горения также может дать сернистый (SO 2) или серный (SO 3) ангидрид.

В чистом кислороде горение и другие реакции окисления идут быстрее и доходят до конца.

Почему же в кислороде горение идет энергичнее, чем в воздухе?

Обладает ли чистый кислород какими-то особыми свойствами, которых нет у кислорода воздуха? Конечно, нет. И в том и в другом случае мы имеем один и тот же кислород, с одинаковыми свойствами. Только в воздухе кислорода содержится в 5 раз меньше, чем в таком же объеме чистого кислорода, и, кроме того, в воздухе кислород перемешан с большими количествами азота, который не только сам не горит, но и не поддерживает горение. Поэтому, если непосредственно около пламени кислород воздуха уже израсходован, то другой его порции необходимо пробиваться через азот и продукты горения. Следовательно, более энергичное горение в атмосфере кислорода можно объяснить более быстрой подачей его к месту горения. При этом процесс соединения кислорода с горящим веществом идет энергичнее и тепла выделяется больше. Чем больше в единицу времени подается к горящему веществу кислорода, тем пламя ярче, тем температура выше и тем сильнее идет горение.

А горит ли сам кислород?

Возьмите цилиндр и опрокиньте его вверх дном. Подведите под цилиндр трубку с водородом. Так как водород легче воздуха, он полностью заполнит цилиндр.

Зажгите водород около открытой части цилиндра и введите в него сквозь пламя стеклянную трубку, через которую вытекает газообразный кислород. Около конца трубки вспыхнет огонь, который будет спокойно гореть внутри цилиндра, наполненного водородом. Это горит не кислород, а водород в присутствии небольшого количества кислорода, выходящего из трубки.

Что же образуется в результате горения водорода? Какой при этом получается окисел?

Водород окисляется до воды. Действительно, на стенках цилиндра постепенно начинают осаждаться капельки конденсированных паров воды. На окисление 2 молекул водорода идет 1 молекула кислорода, и образуются 2 молекулы воды (2Н 2 + O 2 → 2Н 2 O).

Если кислород вытекает из трубки медленно, он весь сгорает в атмосфере водорода, и опыт проходит спокойно.

Стоит только увеличить подачу кислорода настолько, что он не успеет сгореть полностью, часть его уйдет за пределы пламени, где образуются очаги смеси водорода с кислородом, появятся отдельные мелкие вспышки, похожие на взрывы.

Смесь кислорода с водородом - это гремучий газ . Если поджечь гремучий газ, произойдет сильный взрыв: при соединении кислорода с водородом получается вода и развивается высокая температура. Пары воды и окружающие газы сильно расширяются, создается большое давление, при котором может легко разорваться не только стеклянный цилиндр, но и более прочный сосуд. Поэтому работа с гремучей смесью требует особой осторожности.

Кислород обладает еще одним интересным свойством. Он вступает в соединение с некоторыми элементами, образуя перекисные соединения.

Приведем характерный пример. Водород, как известно, одновалентен, кислород двухвалентен: 2 атома водорода могут соединиться с 1 атомом кислорода. При этом получается вода. Строение молекулы воды обычно изображают Н - О - Н. Если к молекуле воды присоединить еще 1 атом кислорода, то образуется перекись водорода, формула которой Н 2 O 2 .

Куда же входит второй атом кислорода в этом соединении и какими связями он удерживается? Второй атом кислорода как бы разрывает связь первого с одним из атомов водорода и становится между ними, образуя при этом соединение Н-О-О-Н. Такое же строение имеет перекись натрия (Na-О-О-Na), перекись бария.

Характерным для перекисных соединений является наличие 2 атомов кислорода, связанных между собой одной валентностью. Поэтому 2 атома водорода, 2 атома натрия или 1 атом бария могут присоединить к себе не 1 атом кислорода с двумя валентностями (-О-), а 2 атома, у которых в результате связи между собой также остается только две свободные валентности (-О-О-).

Перекись водорода можно получить действием разбавленной серной кислоты на перекись натрия (Na 2 O 2) или перекись бария (ВаO 2). Удобнее пользоваться перекисью бария, так как при действии на нее серной кислотой образуется нерастворимый осадок сернокислого бария, от которого перекись водорода легко отделить путем фильтрования (ВаO 2 + H 2 SO 4 → BaSO 4 + Н 2 O 2).

Перекись водорода, как и озон, - соединение неустойчивое и разлагается на воду и атом кислорода который в момент выделения обладает большой окислительной способностью. При низких температурах и в темноте разложение перекиси водорода идет медленно. А при нагревании и на свету оно происходит значительно быстрее. Песок, порошок двуокиси марганца, серебра или платины также ускоряют разложение перекиси водорода, а сами при этом остаются без изменения. Вещества, которые только влияют на скорость химической реакции, а сами остаются неизмененными, называются катализаторами .

Если налить немного перекиси водорода в склянку, на дне которой находится катализатор - порошок двуокиси марганца, разложение перекиси водорода пойдет с такой быстротой, что можно будет заметить выделение пузырьков кислорода.

Способностью окислять различные соединения обладает не только газообразный кислород, но и некоторые соединения, в состав которых он входит.

Хорошим окислителем является перекись водорода. Она обесцвечивает различные красители и поэтому применяется в технике для отбеливания шелка, меха и других изделий.

Способность перекиси водорода убивать различные микробы позволяет применять ее как дезинфицирующее средство. Перекись водорода употребляется для промывания ран, полоскания горла и в зубоврачебной практике.

Сильными окислительными свойствами обладает азотная кислота (HNO 3). Если в азотную кислоту добавить каплю скипидара, образуется яркая вспышка: углерод и водород, входящие в состав скипидара, бурно окислятся с выделением большого количества тепла.

Бумага и ткани, смоченные азотной кислотой, быстро разрушаются. Органические вещества, из которых сделаны эти материалы, окисляются азотной кислотой и теряют свои свойства. Если смоченную азотной кислотой бумагу или ткань нагреть, процесс окисления ускорится настолько, что может произойти вспышка.

Азотная кислота окисляет не только органические соединения, но и некоторые металлы. Медь при действии на нее концентрированной азотной кислотой окисляется сначала до окиси меди, выделяя из азотной кислоты двуокись азота, а затем окись меди переходит в азотнокислую соль меди.

Не только азотная кислота, но и некоторые ее соли обладают сильными окислительными свойствами.

Азотнокислые соли калия, натрия, кальция и аммония, которые в технике получили название селитры, при нагревании разлагаются, выделяя кислород. При высокой температуре в расплавленной селитре тлеющий уголек сгорает так энергично, что появляется яркобелый свет. Если же в пробирку с расплавленной селитрой вместе с тлеющим угольком бросить кусочек серы, горение пойдет с такой интенсивностью и температура повысится настолько, что стекло начнет плавиться. Эти свойства селитры давно были известны человеку; он воспользовался этими свойствами для приготовления пороха.

Черный, или дымный, порох приготовляется из селитры, угля и серы. В этой смеси уголь и сера являются горючими материалами. Сгорая, они переходят в газообразный углекислый газ (СO 2) и твердый сернистый калий (K 2 S). Селитра, разлагаясь, выделяет большое количество кислорода и газообразный азот. Выделившийся кислород усиливает горение угля и серы.

В результате горения развивается такая высокая температура, что образовавшиеся газы могли бы расшириться до объема, который в 2000 раз больше объема взятого пороха. Но стенки замкнутого сосуда, где обычно производят сжигание пороха, не позволяют газам легко и свободно расширяться. Создается огромное давление, которое разрывает сосуд в его наиболее слабом месте. Раздается оглушительный взрыв, газы с шумом вырываются наружу, унося с собой в виде дыма размельченные частицы твердого вещества.

Так из калийной селитры, угля и серы образуется смесь, обладающая огромной разрушительной силой.

К соединениям с сильными окислительными свойствами относятся и соли кислородосодержащих кислот хлора. Бертолетова соль при нагревании распадается на хлористый калий и атомарный кислород.

Еще легче, чем бертолетова соль, отдает свой кислород хлорная, или белильная, известь. Белильной известью отбеливают хлопок, лен, бумагу и другие материалы. Хлорная известь употребляется и как средство против отравляющих веществ: отравляющие вещества, как и многие другие сложные соединения, разрушаются под действием сильных окислителей.

Окислительные свойства кислорода, его способность легко вступать в соединение с различными элементами и энергично поддерживать горение, развивая при этом высокую температуру, уже давно обратили на себя внимание ученых различных областей науки. Особенно этим заинтересовались химики и металлурги. Но использование кислорода было ограничено, так как не было простого и дешевого способа получения его из воздуха и воды.

На помощь химикам и металлургам пришли физики. Они нашли очень удобный способ выделения кислорода из воздуха, а физико-химики научились получать его в огромных количествах из воды.

Кислоро́д - элемент 16-й группы (по устаревшей классификации - главной подгруппы VI группы), второго периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 8. Обозначается символом O . Кислород - химически активный неметалл, является самым лёгким элементом из группы халькогенов. Простое вещество кислород при нормальных условиях - газ без цвета, вкуса и запаха, молекула которого состоит из двух атомов кислорода (формула O2), в связи с чем его также называют дикислород]. Жидкий кислород имеет светло-голубой цвет, а твёрдый представляет собой кристаллы светло-синего цвета.

Существуют и другие аллотропные формы кислорода, например - при нормальных условиях газ голубого цвета со специфическим запахом, молекула которого состоит из трёх атомов кислорода (формула O3).

Нахождение в природе.природный кислород состоит из 3 стабильных изотопов о16,о17,о18.

Кислород в виде простого вещества о2 входит в состав атмосферного воздуха.=21% В связанном виде элемент кислорода составная часть воды различных минералов многих орг веществ.

ПОЛУЧЕНИЕ. В настоящее время в промышленности кислород получают из воздуха. Основным промышленным способом получения кислорода является криогенная ректификация. Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной технологии.

В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа.

Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO4:

2KMNO4 = K2MnO4 + MnO2 + O2

Используют также реакцию каталитического разложения пероксида водорода Н2О2 в присутствии оксида марганца(IV):

2H2O2 =MnO2=2H2O + O2

Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO3:

2KClO3 = 2KCl + 3O2

К лабораторным способам получения кислорода относится метод электролиза водных растворов щелочей, а также разложение оксида ртути(II) (при t = 100 °C):

На подводных лодках обычно получается реакцией пероксида натрия и углекислого газа, выдыхаемого человеком:

2Na2O2 + 2CO2 = 2Na2CO3 + O2

ХИМИЧЕСКИЕ СВ_ВА. Сильный окислитель, взаимодействует практически со всеми элементами, образуя оксиды. Степень окисления −2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры (см. Горение). Пример реакций, протекающих при комнатной температуре:

4Li + O2 = 2Li2O

Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:

Окисляет большинство органических соединений:

CH3CH2OH + 3O2 = 2CO2 + 3H2O

При определённых условиях можно провести мягкое окисление органического соединения:

CH3CH2OH +O2 = CH3COOH + H2O

Кислород реагирует непосредственно (при нормальных условиях, при нагревании и/или в присутствии катализаторов) со всеми простыми веществами, кроме Au иинертных газов (He, Ne, Ar, Kr, Xe, Rn); реакции с галогенами происходят под воздействием электрического разряда или ультрафиолета. Косвенным путём получены оксиды золота и тяжёлых инертных газов (Xe, Rn). Во всех двухэлементных соединениях кислорода с другими элементами кислород играет роль окислителя, кроме соединений со фтором (см. ниже #фториды кислорода).

Кислород образует пероксиды со степенью окисления атома кислорода, формально равной −1.

Например, пероксиды получаются при сгорании щелочных металлов в кислороде:

2Na + O2 = Na2O2

Некоторые оксиды поглощают кислород:

2BaO + O2 = 2BaO2

По теории горения, разработанной А. Н. Бахом и К. О. Энглером, окисление происходит в две стадии с образованием промежуточного пероксидного соединения. Это промежуточное соединение можно выделить, например, при охлаждении пламени горящего водорода льдом, наряду с водой, образуется пероксид водорода:

В надпероксидах кислород формально имеет степень окисления −½, то есть один электрон на два атома кислорода (ион O−2). Получают взаимодействием пероксидов с кислородом при повышенных давлении и температуре:

Na2O2 + O2 = 2NaO2

Калий K, рубидий Rb и цезий Cs реагируют с кислородом с образованием надпероксидов:

Неорганические озониды содержат ион O−3 со степенью окисления кислорода, формально равной −1/3. Получают действием озона на гидроксиды щелочных металлов:

2KOH + 3O3 = 2KO3 + H2O +2O2

В ионе диоксигенила O2+ кислород имеет формально степень окисления +½. Получают по реакции:

PtF6 +O2 = O2PtF6

Фториды кислорода Дифторид кислорода, OF2 степень окисления кислорода +2, получают пропусканием фтора через раствор щелочи:

2F2 + 2NaOH = 2NaF + H2O + OF2

Монофторид кислорода (Диоксидифторид), O2F2, нестабилен, степень окисления кислорода +1. Получают из смеси фтора с кислородом в тлеющем разряде при температуре −196 C:

Пропуская тлеющий разряд через смесь фтора с кислородом при определённых давлении и температуре, получают смеси высших фторидов кислорода O3F2, О4F2, О5F2 и О6F2.

Квантовомеханические расчёты предсказывают устойчивое существование иона трифторгидроксония (англ.) OF3+. Если этот ион действительно существует, то степень окисления кислорода в нём будет равна +4.

Кислород поддерживает процессы дыхания, горения, гниения.

В свободном виде элемент существует в двух аллотропных модификациях: O2 и O3 (озон). Как установили в 1899 году Пьер Кюри и Мария Склодовская-Кюри, под воздействием ионизирующего излучения O2 переходит в O3 ОЗОН. Озо́н - состоящая из трёхатомных молекул O3аллотропная модификация кислорода. При нормальных условиях - голубой газ. При сжижении превращается в жидкость цвета индиго. В твёрдом виде представляет собой тёмно-синие, практически чёрные кристаллы.

ХИМ.СВ-ВА Озонa - мощный окислитель, намного более реакционноспособный, чем двухатомный кислород. Окисляет почти все металлы (за исключением золота, платины ииридия) до их высших степеней окисления. Окисляет многие неметаллы. Продуктом реакции в основном является кислород.

2Cu2+ + 2H3O+ + O3 = 2Cu3+ + 3H2O + O2

Озон повышает степень окисления оксидов:

NO + O3 =NO2 + O2

Эта реакция сопровождается хемилюминесценцией. Диоксид азота может быть окислен до азотного ангидрида:

2NO2 + O3 = N2O5 + O2

Озон реагирует с углеродом при нормальной температуре с образованием диоксида углерода:

2C +2O3 = 2CO2 + O2

Озон не реагирует с аммониевыми солями, но реагирует с аммиаком с образованием нитрата аммония:

2NH3 + 4O3 = NH4NO3 + 4O2 + H2O

Озон реагирует с водородом с образованием воды и кислорода:

O3 + H2 = O2 + H2O

Озон реагирует с сульфидами с образованием сульфатов:

PbS + 4O3 = PbSO4 + 4O2

С помощью озона можно получить Серную кислоту как из элементарной серы, так и из диоксида серы:

S + H2O + O3 = H2SO4

3SO2 + 3H2O + O3 = 3H2SO4

Все три атома кислорода в озоне могут реагировать по отдельности в реакции хлорида олова с соляной кислотой и озоном:

3SnCl2 + 6HCl + O3 = 3SnCl4 + 3H2O

В газовой фазе озон взаимодействует с сероводородом с образованием двуокиси серы:

H2S + O3 = SO2 + H2O

В водном растворе проходят две конкурирующие реакции с сероводородом, одна с образованием элементарной серы, другая с образованием серной кислоты:

H2S + O3 = S + O2 + H2O

3H2S + 4O3 = 3H2SO4

Обработкой озоном раствора иода в холодной безводной хлорной кислоте может быть получен перхлорат иода(III):

I2 + 6HClO4 +O3 = 2I(ClO4)3 + 3H2O

Твёрдый нитрилперхлорат может быть получен реакцией газообразных NO2, ClO2 и O3:

2NO2 + 2ClO2 + 2O2 = 2NO2ClO4 + O2

Озон может участвовать в реакциях горения, при этом температуры горения выше, чем с двухатомным кислородом:

3C3N2 + 4O3 = 12CO + 3N2

Озон может вступать в химические реакции и при низких температурах. При 77 K (-196 °C), атомарный водород взаимодействует с озоном с образованием супероксидного радикала с димеризацией последнего:

H + O3 = HO2 . + O

2HO2 . = H2O2 +O2

Озон может образовывать неорганические озониды, содержащие анион O3−. Эти соединения взрывоопасны и могут храниться только при низких температурах. Известны озониды всех щелочных металлов (кроме франция). KO3, RbO3, и CsO3 могут быть получены из соответствующих супероксидов:

KO2 + O3 = KO3 + O2

Озонид калия может быть получен и другим путём из гидроксида калия:

2KOH + 5O3 = 2KO3 + 5O2 + H2O

NaO3 и LiO3 могут быть получены действием CsO3 в жидком аммиаке NH3 на ионообменные смолы, содержащие ионы Na+ или Li+:

CsO3 + Na+ = Cs+ + NaO3

Обработка озоном раствора кальция в аммиаке приводит к образованию озонида аммония, а не кальция:

3Ca + 10NH3 + 7O3 = Ca * 6NH3 + Ca(OH)2 + Ca(NO3)2 + 2NH4O3 + 3O2 + 2H2O

Озон может быть использован для удаления марганца из воды с образованием осадка, который может быть отделён фильтрованием:

2Mn2+ + 2O3 + 4H2O = 2MnO(OH)2 + 2O2 + 4H+

Озон превращает токсичные цианиды в менее опасные цианаты:

CN- + O3 = CNO- + O2

Озон может полностью разлагать мочевину :

(NH2)2CO + O3 = N2 + CO2 + 2H2O

Взаимодействие озона с органическими соединениями с активированным или третичным атомом углерода при низких температурах приводит к соответствующимгидротриоксидам.

ПОЛУЧЕНИЕ. Озон образуется во многих процессах, сопровождающихся выделением атомарного кислорода, например при разложении перекисей, окислении фосфора и т. п.

В промышленности его получают из воздуха или кислорода в озонаторах действием электрического разряда. Сжижается O3 легче, чем O2, и потому их несложно разделить. Озон для озонотерапии в медицине получают только из чистого кислорода. При облучении воздуха жёстким ультрафиолетовым излучением образуется озон. Тот же процесс протекает в верхних слоях атмосферы, где под действием солнечного излучения образуется и поддерживается озоновый слой.

В лаборатории озон можно получить взаимодействием охлаждённой концентрированной серной кислоты с пероксидом бария:

3H2SO4 + 3BaO2 = 3BaSO4 + O3 + 3H2O

Пероксиды - сложные вещества, в которых атомы кислорода соединены друг с другом. Пероксиды легко выделяют кислород. Для неорганических веществ рекомендуется использовать термин пероксид, для органических веществ и сегодня в русском языке часто используют термин перекись. Пероксиды многих органических веществ взрывоопасны (пероксид ацетона), в частности, они легко образуютсяфотохимически при длительном освещении эфиров в присутствии кислорода. Поэтому перед перегонкой многие эфиры (диэтиловый эфир, тетрагидрофуран) требуют проверки на отсутствие пероксидов.

Пероксиды замедляют синтез белка в клетке.

В зависимости от структуры различают собственно пероксиды, надпероксиды, неорганические озониды. Неорганические пероксиды в виде бинарных или комплексных соединений известны почти для всех элементов. Пероксиды щелочных и щелочноземельных металлов реагируют с водой, образуя соответствующий гидроксид и пероксид водорода.

Органические пероксиды подразделяются на диалкилпероксиды, алкилгидропероксиды, диацилпероксиды, ацилгидропероксиды (пероксокарбоновые кислоты), циклические пероксиды. Органические пероксиды термически неустойчивы и часто взрывоопасны. Используются как источники свободных радикалов в органическом синтезе и промышленности

Галогени́ды (галоиды) - соединения галогенов с другими химическими элементами или радикалами. При этом галоген, входящий в соединение, должен быть электроотрицательным; так, оксид брома не является галогенидом.

По участвующему в соединении галогену галогениды также называются фторидами, хлоридами, бромидами, иодидами и астатидами. Наиболее известны под этим названием галогениды серебра благодаря массовому распространению плёночной галогеносеребряной фотографии.

Соединения галогенов между собой называются интергалогенидами, или межгалоидными соединениями (например, пентафторид иода IF5).

В галогенидах галоген имеет отрицательную степень окисления, а элемент - положительную.

Галогенид-ион - отрицательно заряженный атом галогена.

8 О 1s 2 2s 2 2p 4 ; А r = 15,999 Изотопы: 16 O (99,759 %); 17 О (0,037 %); 18 О (0,204 %); ЭО - 3,5


Кларк в земной коре 47% по массе; в гидросфере 85,82% по массе; в атмосфере 20,95% по объему.


Самый распространенный элемент.


Формы нахождения элемента: а) в свободном виде - О 2 , О 3 ;


б) в связанном виде: анионы О 2- (преимущественно)


Кислород - типичный неметалл, p-элемент. Валентность = II; степень окисления -2 (за исключением Н 2 О 2 , OF 2 , O 2 F 2)

Физические свойства O 2

Молекулярный кислород O 2 при обычных условиях находится в газообразном состоянии, не имеет цвета, запаха и вкуса, малорастворим в воде. При глубоком охлаждении под давлением конденсируется в бледно - голубую жидкость (Тkип - 183°С), которая при -219°С превращается в кристаллы сине - голубого цвета.

Способы получения

1. Кислород образуется в природе в поцессе фотосинтеза mCО 2 + nH 2 O → mO 2 + Сm(H 2 O)n


2. Промышленное получение


а) ректификация жидкого воздуха (отделение от N 2);


б) электролиз воды: 2H 2 O → 2Н 2 + О 2


3. В лаборатории получают термическим окислительно-восстановительным разложением солей:


а) 2КСlO 3 = 3О 2 + 2KCI


б) 2КМпO 4 = О 2 + МпО 2 + К 2 МпО 4


в) 2KNO 3 = О 2 + 2KNО 2


г) 2Cu(NO 3)O 2 = О 2 + 4NО 2 + 2CuO


д) 2AgNO 3 = О 2 + 2NО 2 +2Ag


4. В герметически замкнутых помещениях и в аппаратах для автономного дыхания кислород получают реакцией:


2Na 2 O 2 + 2СO 2 = О 2 + 2Na 2 CO 3

Химические свойства кислорода

Кислород - сильный окислитель. По химической активности уступает только фтору. Образует соединения со всеми элементами, кроме Не, Ne и Аг. Непосредственно реагирует с большинством простых веществ при обычных условиях или при нагревании, а также в присутствии катализаторов (исключение - Au, Pt, Hal 2 , благородные газы). Реакции с участием О 2 в большинстве случаев экзотермичны, часто протекают в режиме горения, иногда - взрыва. В результате реакций образуются соединения, в которых атомы кислорода, как правило, имеют С.О. -2:

Окисление щелочных металлов

4Li + О 2 = 2Li 2 O оксид лития


2Na + О 2 = Na 2 О 2 пероксид натрия


К + О 2 = КО 2 супероксид калия

Окисление всех металлов, кроме Au, Pt

Me + О 2 = Ме x O y оксиды

Окисление неметаллов, кроме галогенов и благородных газов

N 2 +О 2 = 2NO - Q


S + О 2 = SО 2 ;


C + О 2 = CО 2 ;


4Р + 5О 2 = 2Р 2 О 5


Si + О 2 = SiО 2

Окисление водородных соединений неметаллов и металлов

4HI + О 2 = 2I 2 + 2Н 2 O


2H 2 S + 3О 2 =2SО 2 + 2Н 2 O


4NH 3 + 3О 2 =2N 2 + 6Н 2 O


4NH 3 + 5О 2 = 4NO + 6Н 2 O


2PH 3 + 4О 2 = P 2 О 5 + 3Н 2 O


SiH 4 + 2О 2 = SiО 2 + 2Н 2 O


C x H y + О 2 = CО 2 + Н 2 O


MeH x + 3О 2 = Me x O y + Н 2 O

Окисление низших оксидов и гидроксидов поливалентных металлов и неметаллов

4FeO + О 2 = 2Fe 2 О 3


4Fe(OH) 2 +О 2 + 2H 2 O = 4Fe(OH) 3


2SО 2 + О 2 = 2SО 3


4NО 2 + О 2 + 2H 2 O = 4HNО 3

Окисление сульфидов металлов

4FeS 2 + 11О 2 = 8SО 2 + 2Fe 2 О 3

Окисление органических веществ

Все органические соединения горят, окисляясь кислородом воздуха.


Продуктами окисления различных элементов, входящих в их молекулы, являются:








Кроме реакций полного окисления (горения) возможны также реакции неполного окисления.


Примеры реакций неполного окисления органических веществ:


1) каталитическое окисление алканов

2) каталитическое окисление алкенов



3) окисление спиртов


2R-CH 2 OH + O 2 → 2RCOH + 2Н 2 O


4) окисление альдегидов

Озон

Озон О 3 - более сильный окислитель, чем O 2 , так как в процессе реакции его молекулы распадаются с образованием атомарного кислорода.


Чистый О 3 - газ синего цвета, очень ядовит.


К + О 3 = КО 3 озонид калия, красного цвета.


PbS + 2О 3 = PbSО 4 + О 2


2KI + О 3 + Н 2 O = I 2 + 2КОН + О 2


Последняя реакция используется для качественного и количественного определения озона.

Урок 1.

Тема. Оксиген Кислород, состав его молекулы, физические свойства.

Получение кислорода в лаборатории Реакция разложения.

Понятие о катализаторе.

Задачи урока: в ходе урока закрепить знания учащихся о химическом

элементе и простом веществе на примере Оксигена и

кислорода;

рассмотреть способы получения кислорода в лаборатории и

промышленности;

познакомить учащихся с историей открытия кислорода и

распространением элемента Оксигена в природе;

обобщить знания учащихся о воздухе и его составе;

сформировать представление о реакции разложения,

катализаторе.

продолжать формировать умение работать с дополнительной

литературой, обобщать, выделять главное.

Ход урока.

1. Орг. момент.

2. Актуализация опорных знаний учащихся.

Что изучает химия?

Дайте определение вещества.

Что мы называем простым веществом? Приведите примеры.

На какие две группы делятся простые вещества?

Приведите примеры металлов и неметаллов.

По каким признакам металлы отличаются от неметаллов?

Что такое «химический элемент»?

В чем заключается разница между «химическим элементом» и «простым веществом»?

3. Изучение нового материала.

С этого урока мы начинаем знакомиться с веществами, которые играют важную роль в жизни человека - одним из таких веществ является кислород.

Что вы уже знаете о кислороде?

А что еще можете и хотите узнать?

По мнению людей религиозных, вездесущим, всемогущим и в то же время невидимым может быть только бог. В действительности же все эти три эпитета вполне можно к химическому элементу с порядковым номером 8 – Оксигену, который образует простое вещество Кислород.

Подумайте, и заполните таблицы - характеристики химического элемента и простого вещества.

Химический знак Простое вещество

Название элемента Оксиген Формула соединения O 2

Символ O Mr 32

Ar 16 Физические свойства

Валентность 11 Химические свойства

Получение

Нахождение в природе

Применение

Где, по вашему мнению, встречается элемент Оксиген?

47% от массы защитной коры

(SiO 2, Fe 2 O 3, Al 2 O 3 и т . п .)

65% массы тела

О 2

человека

80% гидросферы (H 2 O )

Химический элемент Оксиген вполне заслуживает такие поэтические строчки.

Я скрізь навколо тебе є,

Бо Оксиген – ім"я моє.

Я і в деревах, у траві

У твоїх жилах, у крові.

Что мы знаем о физических свойствах простого вещества кислорода?

При обычных условиях это газ, который не имеет цвета, вкуса и запаха. Он тяжелее воздуха и его собирают способом вытеснения воздуха. Он малорастворим в воде, но этого достаточно чтобы в воде жили живые существа (рыбы, насекомые и т.д). Его можно также собирать и способом вытеснения воды. Для человека наиболее важны такие свойства кислорода как способность поддерживать дыхание и горение.

    Как же можно получить кислород?

В лаборатори кислород получают при нагревании кислородсодержащих

веществ, таких как перманганат калия, перекись водорода, хлорат калия. Они разлагаются с выделение кислорода. Обратите внимание на следующие уравнения

o

t

2КМ n О 4 К 2 М n О 4 n О 2 + О 2

o

t,MnO 2

2H 2 O 2 → 2H 2 O + O 2

o

t

2KCLO 3 → 2KCL + 3O 2

Что общего в этих уравнениях?

    Да вы правы. И такие реакции называются реакциями разложения . Это реакции, в результате которых из одного сложного вещества получают несколько простых или сложных.

    Обратите внимание, что в реакции разложения перекиси водорода в

условия протекания реакций помимо температуры, стоит и формула манган (IV ) оксида. Это вещество называется катализатором .

    Найдите в §17 на стр. 137 определение, что называется катализатором. Запишите это определение в тетрадь.

В промышленности для получения кислорода используют те вещества, которые широко распространены в природе.

Это вода и воздух.

Через воду пропускают постоянный ток, и она разлагается с выделением кислорода.

пост. ток

2 H 2 O → 2 H 2 + O 2

- К какому типу относится эта реакция?

Чтобы выделить кислород из воздуха, воздух охлаждают до t º = -196ºС. Затем температуру повышают в растворе остается жидкий кислород. Его хранят в специальных сосудах – кислородных танках и используют для нужд промышленности.

Химические свойства кислорода мы с вами рассмотрим на следующих уроках.

4. Общение знаний учащихся.

- Что нового вы узнали на уроке?

- Дайте характеристику химическому элементу Оксигену.

- Опишите физические свойства кислорода.

- Расскажите, как получают кислород в лаборатории и промышленности.

- Расставьте коэффициенты в уравнениях реакций и найдите реакции разложения.

Fe + HCL → FeCL 2 + H 2 CaCO 3 → CaO + CO 2

N 2 O 5 → No 2 + O 2 KBr + Cl 2 → Kcl + Br 2

Pb + O 2 → PbO KNO 3 → KNO 2 + O 2

5. Итоги урока.

Выставление оценок.

Задание творческой группе подготовит сообщение об истории открытия кислорода.

6. Домашнее задание.

2) Составить схему – конспект

«Характеристика элемента Оксигена»

«Получение кислорода лаборатории и промышленности»

«Физические свойства кислорода»

3) попробуйте составить сенкан, описывающий свойства кислорода или его применение (см. с.12).

Урок 2.

ТЕМА. Химические свойства кислорода: взаимодействие с углем, серой, фосфором. Реакция соединения. Понятие об оксидах, окислении, горении.

Задачи урока: в ходе урока продолжить формировать представление о

различии понятий «химический элемент» и «простое

вещество»;

рассмотреть химические свойства простого вещества

кислорода;

продолжить формировать умение составлять уравнения

химических реакций;

познакомить с понятиями: реакция горения, оксиды, окисление, горение;

продолжить формировать умение выделять главное, обобщать.

Ход урока.

    Орг. момент.

    Проверка выполнения домашнего задания.

а) выполнение упр. 9 (с.141).

б) рассмотреть составленные схемы – конспекты.

в) заслушивание стихотворений.

г) сообщение творческой группы.

3. Актуализация опорных знаний учащихся.

- Какие простые вещества образует химический элемент Оксиген?

- Какими методами можно собрать кислорода? Почему?

- Как доказать, что в стакане находится кислород?

- Перечислите физические свойства кислорода.

- Какие из них играют важную роль в жизни человека? Почему?

Какие свойства вещества называются химическими?

4.Изучение нового материала.

Кислород – одно из самых активных веществ он реагирует с простыми веществами: металлами и неметаллами, со сложными веществами. Большинство реакций протекает при нагревании.

Рассмотрим некоторые из этих реакций.

- Демонстрация горения серы, углерода, спирта в кислороде.

Давайте запишем уравнения этих превращений.

S + O 2 → SO 2

IV II

C + O 2 → CO 2

- Найдите в §19 описание опыта сжигания красного фосфора.

- Записываем уравнение реакции горения фосфора.

IV II

4 P + 5 O 2 → 2 P 2 O 5

Что общего в уравнения записанных реакций.

- Реакции, когда из нескольких соединений получается только одно сложное вещество, называются реакциями соединения.

- Реакции, в которых участвует кислород, называются реакциями окисления. Если процесс окисления сопровождается выделением света и тепла, то он называется горением.

Давайте рассмотрим соединения, которые образовались при горении серы, углерода, фосфора.

- Что общего в данных соединениях?

- Какие отличия вы видите в записанных формулах:

Эти соединения называются оксидами. Оксиды – это сложные вещества, состоящие из двух элементов, один из которых кислород.

Все новое, что мы узнали на этом уроке можно записать в виде короткой схемы.

Me окисление

O 2 + не Me Э 2 О x

сл. в-ва горение оксиды.

5. Закрепление знаний учащихся.

- Что нового мы узнали на уроке?

Что вам понравилось на уроке?

Что не понравилось?

Кто из учащихся, по вашему мнению, был наиболее активным?

- Из перечня веществ выпишите формулы оксидов

HNO 3 , K 2 O, NaCl, HJ, CaO, H 2 So 4 , So 2 , CuSo 4 , O 2 .

- Расставьте коэффициенты в уравнениях следующих реакций.

Fe + O 2 → Fe 3 O 4 Ca + O 2 → CaO

SO 2 + O 2 → SO 3 Li + O 2 → Li 2 O

H 2 + O 2 → H 2 O PH 3 + O 2

KMnO 4 O 2

BaO

Одним из важнейших элементов на нашей планете является кислород. Химические свойства этого вещества позволяют ему участвовать в биологических процессах, а повышенная активность делает кислород значимым участником всех известных химических реакций. В свободном состоянии это вещество имеется в атмосфере. В связанном состоянии кислород входит в состав минералов, горных пород, сложных веществ, из которых состоят различные живые организмы. Общее количество кислорода на Земле оценивается в 47% общей массы нашей планеты.

Обозначение кислорода

В периодической системе кислород занимает восьмую ячейку этой таблицы. Его международное название oxigenium. В химических записях он обозначается латинской литерой «О». В естественной среде атомарный кислород не встречается, его частички соединяются, образуя парные молекулы газа, молекулярная масса которого равна 32 г/моль.

Воздух и кислород

Воздух представляет смесь нескольких распространенных на Земле газов. Больше всего в воздушной массе азота - 78,2% по объему и 75,5 % по массе. Кислород занимает лишь второе место по объему - 20,9%, а по массе - 23,2%. Третье место закреплено за благородными газами. Остальные примеси - углекислый газ, водяной пар, пыль и прочее - занимают лишь доли процента в общей воздушной массе.

Вся масса естественного кислорода является смесью трех изотопов - 16 О, 17 О, 18 О. Процентное содержание этих изотопов в общей массе кислорода равно 99,76%, 0,04% и 0,2% соответственно.

Физические и химические свойства кислорода

Один литр воздуха при нормальных условиях весит 1,293 г. При понижении температуры до -140⁰С воздух становится бесцветной прозрачной жидкостью. Несмотря на низкую температуру кипения воздух можно сохранять в жидком состоянии даже при комнатной температуре. Для этого жидкость нужно поместить в так называемый сосуд Дьюара. Погружение в жидкий кислород коренным образом меняет обычные свойства предметов.

Этиловый спирт и многие газы становятся твердыми предметами, ртуть приобретает твердость и ковкость, а резиновый мячик теряет свою упругость и рассыпается при малейшем ударе.

Кислород растворяется в воде, хотя и в небольших количествах - морская вода содержит 3-5% кислорода. Но даже такое небольшое количество этого газа положило начало существованию рыб, моллюсков и различных морских организмов, которые получают кислород из воды для поддержания процессов собственного жизнеобеспечения.

Строение атома кислорода

Описанные свойства кислорода в первую очередь объясняются внутренним строением этого элемента.

Кислород относится к главной подгруппе шестой группы элементов периодической системы. Во внешнем электронном облаке элемента находятся шесть электронов, четыре из которых занимают p-орбитали, а оставшиеся два располагаются на s-орбиталях. Такое внутреннее строение обуславливает большие энергетические затраты, направленные на разрывание электронных связей - атому кислорода проще заимствовать два недостающих электрона на внешнюю орбиталь, чем отдать свои шесть. Поэтому ковалентность кислорода в большинстве случаев равна двум. Благодаря двум свободным электронам кислород легко образует двухатомные молекулы, которые характеризуются высокой прочностью связи. Лишь при прилагаемой энергии свыше 498 Дж/моль молекулы распадаются, и образуется атомарный кислород. Химические свойства этого элемента позволяют ему вступать в реакции со всеми известными веществами, исключая гелий, неон и аргон. Скорость взаимодействия зависит от температуры реакции и от природы вещества.

Химические свойства кислорода

С различными веществами кислород вступает в реакции образования оксидов, причем эти реакции характерны и для металлов, и для неметаллов. Соединения кислорода с металлами называют основными оксидами - классическим примером служит оксид магния и оксид кальция. Взаимодействие оксидов металлов с водой приводит к образованию гидроксидов, подтверждающих активные химические свойства кислорода. С неметаллами это вещество образует кислотные оксиды - например, триоксид серы SO 3. При взаимодействии этого элемента с водой получается серная кислота.

Химическая активность

С подавляющим большинством элементов кислород взаимодействует непосредственно. Исключение составляют золото, галогены и платина. Взаимодействие кислорода с некоторыми веществами значительно ускоряется при наличии катализаторов. Например, смесь водорода и кислорода в присутствии платины вступает в реакцию даже при комнатной температуре. С оглушительным взрывом смесь превращается в обычную воду, важной составной частью которой является кислород. Химические свойства и высокая активность элемента объясняют выделение большого количества света и теплоты, поэтому химические реакции с кислородом часто называются горением.

Горение в чистом кислороде происходит гораздо интенсивнее, чем в воздухе, хотя количество теплоты, выделяемой при реакции, будет приблизительно одинаковым, но процесс из-за отсутствия азота протекает гораздо быстрее, а температура горения становится выше.

Получение кислорода

В 1774 году английский ученый Д. Пристли выделил неизвестный газ из реакции разложения оксида ртути. Но ученый не связал выделенный газ с уже известным веществом, входящим в состав воздуха. Лишь несколько лет спустя великий Лавуазье изучил физико-химические свойства кислорода, полученного в данной реакции, и доказал его идентичность с газом, входящим в состав воздуха. В современном мире кислород получают из воздуха. В лабораториях использую промышленный кислород, который поставляется баллонами под давлением около 15 Мпа. Чистый кислород можно получить и в лабораторных условиях, стандартным способом его получения является термическое разложение перманганата калия, которое протекает по формуле:

Получение озона

Если через кислород или воздух пропустить электричество, то в атмосфере появится характерный запах, предвещающий появление нового вещества - озона. Озон можно получить и из химически чистого кислорода. Образование этого вещества можно выразить формулой:

Данная реакция самостоятельно протекать не может - для ее успешного завершения необходима внешняя энергия. Зато обратное превращение озона в кислород происходит самопроизвольно. Химические свойства кислорода и озона разнятся во многом. Озон отличается от кислорода плотностью, температурой плавления и кипения. При нормальных условиях этот газ имеет голубой цвет и обладает характерным запахом. Озон обладает большей электропроводностью и лучше растворяется в воде, чем кислород. Химические свойства озона объясняются процессом его распада - при разложении молекулы этого вещества образуется двухатомная молекула кислорода плюс один свободный атом этого элемента, который агрессивно реагирует с другими веществами. Например, известна реакция взаимодействия озона и кислорода: 6Ag+O 3 =3Ag 2 O

А вот обычный кислород не соединяется с серебром даже при высокой температуре.

В природе активный распад озона чреват образованием так называемых озоновых дыр, которые подвергают угрозе жизненные процессы на нашей планете.

Понравилась статья? Поделиться с друзьями: