Первичная атмосфера земли. Строение и химический состав атмосферы земли Каков был состав первичной атмосферы

Атмосфера - газовая оболочка нашей планеты, которая вращается вместе с Землей. Газ, находящийся в атмосфере, называют воздухом. Атмосфера соприкасается с гидросферой и частично покрывает литосферу. А вот верхние границы определить трудно. Условно принято считать, что атмосфера простирается вверх приблизительно на три тысячи километров. Там она плавно перетекает в безвоздушное пространство.

Химический состав атмосферы Земли

Формирование химического состава атмосферы началось около четырех миллиардов лет назад. Изначально атмосфера состояла лишь из легких газов - гелия и водорода. По мнению ученых исходными предпосылками создания газовой оболочки вокруг Земли стали извержения вулканов, которые вместе с лавой выбрасывали огромное количество газов. В дальнейшем начался газообмен с водными пространствами, с живыми организмами, с продуктами их деятельности. Состав воздуха постепенно менялся и в современном виде зафиксировался несколько миллионов лет назад.

Главные же составляющие атмосферы это азот (около 79%) и кислород (20%). Оставшийся процент (1%) приходится на следующие газы: аргон, неон, гелий, метан, углекислый газ, водород, криптон, ксенон, озон, аммиак, двуокиси серы и азота, закись азота и окись углерода, входящих в этот один процент.

Кроме того, в воздухе содержится водяной пар и твердые частицы (пыльца растений, пыль, кристаллики соли, примеси аэрозолей).

В последнее время ученые отмечают не качественное, а количественное изменение некоторых ингредиентов воздуха. И причина тому - человек и его деятельность. Только за последние 100 лет содержание углекислого газа значительно возросло! Это чревато многими проблемами, самая глобальная из которых - изменение климата.

Формирование погоды и климата

Атмосфера играет важнейшую роль в формировании климата и погоды на Земле. Очень многое зависит от количества солнечных лучей, от характера подстилающей поверхности и атмосферной циркуляции.

Рассмотрим факторы по порядку.

1. Атмосфера пропускает тепло солнечных лучей и поглощает вредную радиацию. О том, что лучи Солнца падают на разные участки Земли под разными углами, знали еще древние греки. Само слово "климат" в переводе с древнегреческого означает "наклон". Так, на экваторе солнечные лучи падают практически отвесно, потому здесь очень жарко. Чем ближе к полюсам, тем больше угол наклона. И температура понижается.

2. Из-за неравномерного нагревания Земли в атмосфере формируются воздушные течения. Они классифицируются по своим размерам. Самые маленькие (десятки и сотни метров) - это местные ветра. Далее следуют муссоны и пассаты, циклоны и антициклоны, планетарные фронтальные зоны.

Все эти воздушные массы постоянно перемещаются. Некоторые из них довольно статичны. Например, пассаты, которые дуют от субтропиков по направлению к экватору. Движение других во многом зависит от атмосферного давления.

3. Атмосферное давление - еще один фактор, влияющий на формирование климата. Это давление воздуха на поверхность земли. Как известно, воздушные массы перемещаются с области с повышенным атмосферным давлением в сторону области, где это давление ниже.

Всего выделено 7 зон. Экватор - зона низкого давления. Далее, по обе стороны от экватора вплоть до тридцатых широт - область высокого давления. От 30° до 60° - опять низкое давление. А от 60° до полюсов - зона высокого давления. Между этими зонами и циркулируют воздушные массы. Те, что идут с моря на сушу, несут дожди и ненастье, а те, что дуют с континентов - ясную и сухую погоду. В местах, где воздушные течения сталкиваются, образуются зоны атмосферного фронта, которые характеризуются осадками и ненастной, ветреной погодой.

Ученые доказали, что от атмосферного давления зависит даже самочувствие человека. По международным стандартам нормальное атмосферное давление - 760 мм рт. столба при температуре 0°C. Этот показатель рассчитан на те участки суши, которые находятся практически вровень с уровнем моря. С высотой давление понижается. Поэтому, например, для Санкт-Петербурга 760 мм рт.ст. - это норма. А вот для Москвы, которая расположена выше, нормальное давление - 748 мм рт.ст.

Давление меняется не только по вертикали, но и по горизонтали. Особенно это чувствуется при прохождении циклонов.

Строение атмосферы

Атмосфера напоминает слоеный пирог. И каждый слой имеет свои особенности.

. Тропосфера - самый близкий к Земле слой. "Толщина" этого слоя изменяется по мере удаления от экватора. Над экватором слой простирается ввысь на 16-18 км, в умеренных зонах - на 10-12км, на полюсах - на 8-10 км.

Именно здесь содержится 80% всей массы воздуха и 90% водяного пара. Здесь образуются облака, возникают циклоны и антициклоны. Температура воздуха зависит от высоты местности. В среднем она понижается на 0,65° C на каждые 100 метров.

. Тропопауза - переходный слой атмосферы. Его высота - от нескольких сотен метров до 1-2 км. Температура воздуха летом выше, чем зимой. Так, например, над полюсами зимой -65° C. А над экватором в любое время года держится -70° C.

. Стратосфера - это слой, верхняя граница которого проходит на высоте 50-55 километров. Турбулентность здесь низкая, содержание водяного пара в воздухе - ничтожное. Зато очень много озона. Максимальная его концентрация - на высоте 20-25 км. В стратосфере температура воздуха начинает повышаться и достигает отметки +0,8° C. Это обусловлено тем, что озоновый слой взаимодействует с ультрафиолетовым излучением.

. Стратопауза - невысокий промежуточный слой между стратосферой и следующей за ней мезосферой.

. Мезосфера - верхняя граница этого слоя - 80-85 километров. Здесь происходят сложные фотохимические процессы с участием свободных радикалов. Именно они обеспечивают то нежное голубое сияние нашей планеты, которое видится из космоса.

В мезосфере сгорает большинство комет и метеоритов.

. Мезопауза - следующий промежуточный слой, температура воздуха в котором минимум -90°.

. Термосфера - нижняя граница начинается на высоте 80 - 90 км, а верхняя граница слоя проходит приблизительно по отметке 800 км. Температура воздуха возрастает. Она может варьироваться от +500° C до +1000° C. В течение суток температурные колебания составляют сотни градусов! Но воздух здесь настолько разрежен, что понимание термина "температура" как мы его представляем, здесь не уместно.

. Ионосфера - объединяет мезосферу, мезопаузу и термосферу. Воздух здесь состоит в основном из молекул кислорода и азота, а также из квазинейтральной плазмы. Солнечные лучи, попадая в ионосферу сильно ионизируют молекулы воздуха. В нижнем слое (до 90 км) степень ионизация низкая. Чем выше, тем больше ионизация. Так, на высоте 100-110 км электроны концентрируются. Это способствует отражению коротких и средних радиоволн.

Самый важный слой ионосферы - верхний, который находится на высоте 150-400 км. Его особенность в том, что он отражает радиоволны, а это способствует передаче радиосигналов на значительные расстояния.

Именно в ионосфере происходят такое явление, как полярное сияние.

. Экзосфера - состоит из атомов кислорода, гелия и водорода. Газ в этом слое очень разрежен и нередко атомы водорода ускользают в космическое пространство. Поэтому этот слой и называют "зоной рассеивания".

Первым ученым, который предположил, что наша атмосфера имеет вес, был итальянец Э. Торричелли. Остап Бендер, например, в романе "Золотой теленок" сокрушался, что на каждого человека давит воздушный столб весом в 14 кг! Но великий комбинатор немного ошибался. Взрослый человек испытывает на себя давление в 13-15 тонн! Но мы не чувствуем этой тяжести, потому что атмосферное давление уравновешивается внутренним давлением человека. Вес нашей атмосферы составляет 5 300 000 000 000 000 тонн. Цифра колоссальная, хотя это всего лишь миллионная часть веса нашей планеты.

Атмосфера начала образовываться вместе с формированием Земли. В процессе эволюции планеты и по мере приближения ее параметров к современным значениям произошли принципиально качественные изменения ее химического состава и физических свойств. Согласно эволюционной модели, на раннем этапе Земля находилась в расплавленном состоянии и около 4,5 млрд. лет назад сформировалась как твердое тело. Этот рубеж принимается за начало геологического летоисчисления. С этого времени началась медленная эволюция атмосферы. Некоторые геологические процессы, (например, излияния лавы при извержениях вулканов) сопровождались выбросом газов из недр Земли. В их состав входили азот, аммиак, метан, водяной пар, оксид СО и диоксид СО2 углерода. Под воздействием солнечной ультрафиолетовой радиации водяной пар разлагался на водород и кислород, но освободившийся кислород вступал в реакцию с оксидом углерода, образуя углекислый газ. Аммиак разлагался на азот и водород. Водород в процессе диффузии поднимался вверх и покидал атмосферу, а более тяжелый азот не мог улетучиться и постепенно накапливался, становясь основным компонентом, хотя некоторая его часть связывалась в молекулы в результате химических реакций (см. ХИМИЯ АТМОСФЕРЫ). Под воздействием ультрафиолетовых лучей и электрических разрядов смесь газов, присутствовавших в первоначальной атмосфере Земли, вступала в химические реакции, в результате которых происходило образование органических веществ, в частности аминокислот. С появлением примитивных растений начался процесс фотосинтеза, сопровождавшийся выделением кислорода. Этот газ, особенно после диффузии в верхние слои атмосферы, стал защищать ее нижние слои и поверхность Земли от опасных для жизни ультрафиолетового и рентгеновского излучений. Согласно теоретическим оценкам, содержание кислорода, в 25 000 раз меньшее, чем сейчас, уже могло привести к формированию слоя озона со всего лишь вдвое меньшей, чем сейчас, концентрацией. Однако этого уже достаточно, чтобы обеспечить весьма существенную защиту организмов от разрушительного действия ультрафиолетовых лучей.

Вероятно, что в первичной атмосфере содержалось много углекислого газа. Он расходовался в ходе фотосинтеза, и его концентрация должна была уменьшаться по мере эволюции мира растений, а также из-за поглощения в ходе некоторых геологических процессов. Поскольку парниковый эффект связан с присутствием углекислого газа в атмосфере, колебания его концентрации являются одной из важных причин таких крупномасштабных климатических изменений в истории Земли, как ледниковые периоды.

Формирование атмосферы. Сегодня атмосфера Земли представляет собой смесь газов - 78% азота, 21% кислорода и небольшого количества других газов,- например, двуокиси углерода. Но когда планета только возникла, в атмосфере не было кислорода - она состояла из газов, первоначально существовавших в Солнечной системе.

Земля возникла, когда небольшие каменные тела, состоящие из пыли и газа солнечной туманности и известные как планетоиды, сталкивались друг с другом и постепенно принимали форму планеты. По мере ее роста газы, заключенные в планетоидах, вырывались наружу и окутывали земной шар. Через некоторое время первые растения начали выделять кислород, и первозданная атмосфера развилась в нынешнюю плотную воздушную оболочку.

Зарождение атмосферы

  1. Дождь из мелких планетоидов обрушился на зарождающуюся Землю 4,6 миллиарда лет назад. Газы солнечной туманности, заключенные внутри планеты, при столкновении вырвались наружу и образовали примитивную атмосферу Земли, состоящую из азота, двуокиси углерода и водяного пара.
  2. Тепло, выделяющееся при образовании планеты, удерживается слоем плотных облаков первозданной атмосферы. «Парниковые газы» - такие, как двуокись углерода и водяной пар - останавливают излучение тепла в космос. Поверхность Земли залита бурлящим морем расплавленной магмы.
  3. Когда столкновения планетоидов стали не такими частыми, Земля начала охлаждаться и появились океаны. Водяной пар конденсируется из густых облаков, и дождь, продолжающийся несколько эпох, постепенно заливает низменности. Таким образом появляются первые моря.
  4. Воздух очищается по мере того, как водяной пар конденсируется и образует океаны. С течением времени в них растворяется двуокись углерода, и в атмосфере теперь преобладает азот. Из-за отсутствия кислорода не образуется защитный озоновый слой, и ультрафиолетовые солнечные лучи беспрепятственно достигают земной поверхности.
  5. Жизнь появляется в древних океанах в течение первого миллиарда лет. Простейшие сине-зеленые водоросли защищены от ультрафиолета морской водой. Они используют для производства энергии солнечный свет и двуокись углерода, при этом в качестве побочного продукта выделяется кислород, который начинает постепенно накапливаться в атмосфере.
  6. Миллиарды лет спустя формируется богатая кислородом атмосфера. Фотохимические реакции в верхних атмосферных слоях создают тонкий слой озона, который рассеивает вредный ультрафиолетовый свет. Теперь жизнь может выйти из океанов на сушу, где в результате эволюции возникает множество сложных организмов.

Миллиарды лет назад толстый слой примитивных водорослей начал выделять в атмосферу кислород. Они сохранились до сегодняшнего дня в виде окаменелостей, которые называются строматолитами.

Вулканическое происхождение

1. Древняя, безвоздушная Земля. 2. Извержение газов.

Согласно этой теории, на поверхности юной планеты Земля активно извергались вулканы. Ранняя атмосфера, вероятно, сформировалась тогда, когда газы, заключенные в кремниевой оболочке планеты, вырвались наружу через сопла вулканов.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Министерство высшего и среднего образования РФ МБОУ СОШ 43 г. Краснодара ПЕРВИЧНАЯ АТМОСФЕРА ЗЕМЛИ

2 слайд

Описание слайда:

Пока еще не удалось достоверно установить историю образования атмосферы. Но уже удалось выявить кое-какие вероятные изменения ее состава. Атмосфера стала зарождаться сразу после формирования Земли. В процессе эволюции она почти полностью утратила свою первоначальную атмосферу. На раннем этапе наша планета находилась в расплавленном состоянии. Твердое тело начало формироваться около четырех с половиной млрд лет тому назад. Это время и станет началом геологического летоисчисления.

3 слайд

Описание слайда:

Как раз именно в этот период и начинается медленная эволюция атмосферы. Такие процессы как выброс лавы во время извержения вулканов, сопровождается неизбежным выбросом газов, таких как азот, метан, водяной пар и другие.

4 слайд

Описание слайда:

При воздействии радиации солнца водяной пар разлагается на кислород и водород. Освободившийся кислород вступает в реакцию с оксидом углерода и образовывается углекислый газ. На азот и водород разлагается аммиак. В процессе диффузии водород поднимается вверх и покидает атмосферу. Азот, который намного тяжелее, не может улетучиться, и постепенно накапливался. Таким образом, азот становится основным компонентом

5 слайд

Описание слайда:

В первичной атмосфере Земли содержались углекислый газ и водород, а между ними возможна реакция, ведущая к образованию болотного газа (метана) и водяного пара. Но основная масса воды, по современным представлениям, была дегазирована из магмы в течение первых сотен миллионов лет после образования атмосферы. Вода сразу же сильно усложнила характер взаимодействия между компонентами и самую структуру биогеносферы.

6 слайд

Описание слайда:

Насыщение первичной атмосферы водяными парами, способность воды аккумулировать («медленно остывать») солнечную энергию заметно изменили термодинамические условия внутри биогеносферы и даже за ее пределами. Необходимо учитывать два момента; во-первых, с появлением воды значительно энергичнее стали протекать процессы выветривания, в результате которых «заряжаются» солнечной энергией геохимические аккумуляторы.

7 слайд

Описание слайда:

Во-вторых, продукты выветривания (глины, например) вступали в соединения с большим количеством воды, и это повышало их энергетический барьер, т. е. минералы удалялись от того момента, при котором они могли бы отдать аккумулированную солнечную энергию. Чтобы выделить эту энергию, им нужно было сначала «подсохнуть».

8 слайд

Описание слайда:

Осадочные породы обезвоживались, опускаясь в глубь земной коры в результате превращения глин в слюды. Если раньше они разряжались где-то неподалеку от поверхности, то после появления на Земле воды геохимические аккумуляторы получили возможность за счет влаги уносить солнечную энергию к нижней границе земной коры. Там они отдавали накопленную энергию и тем самым обеспечивали температурный градиент земной коры.

9 слайд

Описание слайда:

При опускании осадочных пород процессу обезвоживания противостоит увеличение давления, которое препятствует освобождению энергии. Магматические очаги - результат бурного освобождения энергии - возникали при тектонических разрывах, когда давление ослабевало. Если учесть, что в ту пору форма Земли была менее устойчивой, чем сейчас, то во взаимодействии этих факторов с геохимической аккумуляцией можно увидеть причину предполагаемой бурной вулканической деятельности на заре геологической истории нашей планеты.

10 слайд

Описание слайда:

При воздействии ультрафиолетовых лучей, а также электрических разрядов. Смесь из газов вступала в химическую реакцию, после которых образовались органические вещества – аминокислоты. Таким образом, жизнь могла зародиться в атмосфере, которая отличается от современной атмосферы.

11 слайд

Описание слайда:

Когда на Земле появились примитивные растения, начал происходить процесс фотосинтеза. Который, как известно, сопровождается выделением свободного кислорода. После диффузии в верхние слои атмосферы этот газ стал защищать нижние слои и поверхность самой Земли от опасного рентгеновского и ультрафиолетового излучения.

12 слайд

Описание слайда:

Можно предположить, что в первичной атмосфере было много углекислого газа, который расходовался в процессе фотосинтеза, по мере эволюции флоры. Ученые так же полагают, что колебания его концентрации повлияли на климатические изменения в ходе развития Земли.

Атмосфера (от греческого «атмос» - пар, «сфера» - шар) - это воздушная внешняя газовая оболочка планеты, которая окружает Земной шар, вращается вместе с ним, защищает всё живое на Земле от губительного влияния радиации.

По поводу возникновения атмосферы учёные выделяют две гипотезы.

Согласно первой гипотезе – атмосфера газообразная выплавка первичного материала, когда-то покрывавшему раскалённую Землю. Большинство учёных придерживаются второй гипотезы, которая утверждает, что атмосфера является вторичным образованием, возникшем при образовании газовых химических элементов и соединений из расплавленного вещества.

Первая атмосфера образовалась вокруг Земли во время сгущения пыли и газа, она превосходила нашу нынешнюю в 100 раз. Источниками газообразных веществ, из которых состояла первичная атмосфера, были расплавленные горные породы Земной коры, мантии и ядра. Это говорит о том, что атмосфера возникла уже после того, как Земля разделилась на оболочки.

Крупнейшие учёные предполагают, что ранняя атмосфера состояла из смеси водяного пара, водорода, углекислого газа, угарного газа и серы. Следовательно, первичная атмосфера состояла из лёгких газов, которые удерживались у Земной поверхности силами тяготения. Если сравнить древнейшую атмосферу с современной, то в ней отсутствовали привычные азот и кислород. Эти газы, вместе с парами воды находились тогда в глубоких недрах Земли. Мало в то время было воды: она в виде гидроксилов входила в состав мантийного вещества. Только после того, как из пород верхней мантии стали интенсивно высвобождаться водяной пар и различные газы, возникла гидросфера, а толщина атмосферы и её состав изменился.

Кстати, эти процессы продолжаются до сих пор.

Например, при извержении вулканов гавайского типа, при температуре 1000 0 -1200 0 С в газовых выбросах содержится до 80% паров воды и менее 6% углекислого газа. Кроме того, в современную атмосферу выбрасывается большое количество хлора, метана, аммиака, фтора, брома, сероводорода. Можно себе представить, какое огромное количество газов выбрасывалось в глубокой древности во время грандиозных извержений.

Первичная атмосфера была очень агрессивной средой и действовала на горные породы как сильная кислота. Да и температура её была очень высокой. Но как только температура понизилась, произошла конденсация пара. Первичная атмосфера Земли сильно отличалась от современной. Она была значительно более плотной и состояла в основном из углекислого газа. Резкое изменение состава атмосферы произошло 2 – 2,5 млрд. лет назад и связанно с зарождением жизни.

Растения каменноугольного периода в истории Земли поглотили большую часть углекислого газа и насытили атмосферу кислородом. С появлением первоначальной жизни появляются цианобактерии, которые начали перерабатывать компоненты атмосферы, выделяя кислород. При создании атмосферы выделение кислорода произошло из за более масштабного процесса связанного с «перемещением» многочисленных океанических вулканов из под воды на поверхность Земли. Подводный вулкан выбрасывает магму, которая подвергается охлаждению водой. При этом выделяется сероводород и формируются минералы, в химический состав которых входит кислород.


Земные вулканы выбрасывают продукты, которые не реагируют с атмосферным кислородом, а только пополняют его содержание в воде. Последние 200 млн. лет состав земной атмосферы практически остаётся неизменным.

Размеры магнитосферы, масса и объём атмосферы

Раньше считалось (до появления искусственных спутников), что по мере удаления от земной поверхности атмосфера постепенно становилась более разряженной и плавно переходила межпланетное пространство.

Сейчас установлено, что потоки энергии из глубоких слоёв Солнца проникают в космическое пространство далеко за орбиту Земли, вплоть до высших пределов Солнечной системы. Этот так называемый «солнечный ветер» обтекает магнитное поле Земли, формируя удлинённую «полость» внутри которой и сосредоточена земная атмосфера.

Магнитное поле Земли заметно сужено с обращенной к Солнцу дневной стороны и образует длинный язык, вероятно выходящий за пределы орбиты Луны, - с противоположной ночной стороны.

Верхней границей магнитосферы Земли с дневной стороны у экватора считается расстояние приблизительно равное 7 (семи) радиусам Земли.

6371: 7 = 42000 км.

Верхней границей магнитосферы Земли с дневной стороны у полюсов считается расстояние приблизительно равное 28000 км. (что обусловлено центробежной силой вращения Земли).

По объёму атмосфера (около 4х10 12 км) в 3000 раз больше всей гидросферы (вместе с Мировым океаном), однако по массе существенно меньше её и составляет приблизительно 5,15х10 15 т.

Таким образом «вес» атмосферы, приходящейся на единицу площади, или атмосферное давление составляет на уровне моря примерно 11т./м. Атмосфера по объёму во много раз превышает Землю, но составляет лишь 0,0001 массы нашей планеты.

Природный газовый состав атмосферного воздуха и

воздействие некоторых его компонентов на здоровье человека

Газовый состав атмосферного воздуха по объёму представляет собой у поверхности Земли физическую смесь азота (78,08%), кислорода (20,94%),- соотношение азота и кислорода 4:1, аргона (0,9%), углекислого газа (0,035%), а также незначительное количество неона (0,0018%), гелия (0,0005%), криптона (0,0001%), метана (0,00018%), водорода (0,000015%), окиси углерода (0,00001%), озона (0,00001%), закиси азота (0,0003%), ксенона (0,000009%), двуокиси азота (0,000002%).

Кроме того, в воздухе всегда имеются виде разнообразных дымов, пыли и пара взвешенные частицы, аэрозоли и водяные пары.

Водяной пар его концентрация составляет около 0,16% объёма атмосферы. У земной поверхности она колеблется от 3% (в тропиках) до 0,00002% (в Антарктиде).

С высотой количество водяного пара быстро убывает. Если бы собрать воедино всю воду, то она образовала бы слой толщиной в среднем около 2см.(1,6 -1,7см. в умеренных широтах). Этот слой образуется на высоте до 20 км.

Газовый состав нижних слоёв атмосферы на высоте до 110 км. от поверхности Земли, в особенности тропосферы, почти постоянен. Давление и плотность в атмосфере убывает с высотой. Половина воздуха содержится в нижних 5,6 км., а вторая половина до высоты 11,3 км. На высоте 110 км. плотность воздуха в миллион раз меньше чем у поверхности.

В высоких слоях атмосферы состав воздуха меняется под воздействием излучения Солнца, которое приводит к распаду молекул кислорода на атомы.

Приблизительно до высоты 400 – 600 км. атмосфера остаётся кислородо – азотная.

Существенная смена состава атмосферы начинается лишь с высоты 600 км. Тут начинает превышать гелий. Гелиевая корона Земли – так называл гелиевый пояс В. И. Вернадский, распространяется приблизительно до1600 км. от поверхности Земли. Выше этого расстояния 1600 – 2 – 3 тыс. км. идёт превышение водорода.

Часть молекул разлагается на ионы и образует ионосферу.

Свыше 1000 км. находятся радиационные пояса Их можно рассматривать как часть атмосферы, заполненную очень энергетическими ядрами атомов водорода и электронами, захваченными магнитным полем планеты. Так постоянно газовая оболочка Земли превращаются в межпланетный газ (пространство), который состоит:

Из 76% по массе из водорода;

Из 23% по массе из гелия;

Из 1% по массе из космической пыли.

Интересно, что наша атмосфера по составу резко отличается от атмосфер других планет Солнечной системы. Наши ближайшие соседи Венера и Марс имеют в основном углекислую атмосферу, более дальние соседи Юпитер, Сатурн, Уран, Нептун окружены гелиево-водородной атмосферой, одновременно много в этих атмосферах и метана.

Атмосферный воздух – один из важнейших природных ресурсов, без которых жизнь на Земле была бы абсолютно невозможна. Любой компонент по химическому составу, по своему важен для жизни.

КИСЛОРОД газ без цвета и запаха с плотностью 1,23г/л. Самый распространённый химический элемент на Земле.

В атмосфере 20,94% , в гидросфере 85,82%, в литосфере 47% кислорода. Человек при выдохе выделяет 15,4 – 16,0% кислорода атмосферного воздуха. Человек за сутки в состоянии покоя вдыхает около 2722л.(1,4 м) кислорода, выдыхает 0,34 м 3 углекислого газа, кроме того, выбрасывает в сутки в окружающую среду около 400 веществ. Атмосферного воздуха в этом случае через лёгкие проходит 9л. в минуту, 540л. в час, 12960л. в сутки, а при нагрузке 25000 – 30000л. в сутки (25 – 30м 3). За год вдыхает в состоянии покоя 16950м, при физической нагрузке 20000 - 30000м, а на протяжении всей жизни от 65000 до 180000м. воздуха.

Он входит в состав всех живых организмов (в организме человека его по массе около 65%).

Кислород – активный окислитель большинства химических элементов, а также в металлургии, химической и нефтехимической промышленности, в ракетных топливах, его используют в дыхательных аппаратах в космических и подводных кораблях. Люди, животные, растения получают необходимую для жизни энергию за счёт биологического окисления различных веществ кислородом, который поступает в организм различными путями, через легкие и кожу.

Кислород обязательный участник любого горения. Превышение содержания кислорода в атмосфере на 25% может привести к возгоранию на Земле.

Он выделяется растениями при фотосинтезе. При этом около 60% кислорода поступает в атмосферу при фотосинтезе океанического планктона и 40% от зелёных растений суши.

Физиологические сдвиги у здоровых людей наблюдаются в том случае, если содержание кислорода падает до 16 – 17%, при 11 – 13% отмечается выраженная гипоксия.

Кислородное голодание из за снижения атмосферного давления кислорода может иметь место при полётах (высотная болезнь), при восхождении на горы (горная болезнь), которая начинается на высоте 2,5 – 3км.

Низкая концентрация кислорода может создаваться в воздухе замкнутых и герметически закрытых пространств, например в подводных лодках при авариях, а также в рудниках, шахтах и заброшенных колодцах, где кислород может быть вытеснен другими газами. Предупредить действие недостатка кислорода при полётах можно с помощью индивидуальных кислородных приборов, скафандров или герметических кабин самолётов.

В систему жизнеобеспечения космических кораблей или подводных лодок входит аппаратура, поглощающая из воздуха углекислый газ, водяные пары и другие примеси и добавляющая к нему кислород.

Для предупреждения горной болезни большое значение имеет постоянная акклиматизация (приспособление) на промежуточных станциях в условиях разряжённой атмосферы. При пребывании в горах в крови увеличивается количество гемоглобина и эритроцитов, а окислительные процессы в тканях за счёт усиления синтеза некоторых ферментов протекает более полно, что позволяет человеку приспосабливаться к жизни на более больших высотах.

Имеются горные селения расположенные на высоте 3-5км. над уровнем моря, особо тренированным альпинистам удаётся совершать восхождения на горы высотой 8 км. и более без использования кислородных приборов.

Кислород в чистом виде обладает токсическими действиями. При дыхании чистым кислородом у животных через 1-2 часа образуются отелектазы в лёгких (из за закупорки слизи мелких бронхов), а через 3-5 часов нарушение проницаемости капилляров лёгких, через 24 часа.

Явления отёка лёгких. В условиях нормального атмосферного давления, когда требуется увеличить работоспособность человека при большой физической нагрузке или при лечении больных гипоксией значительно увеличивают давление и подачу кислорода до 40%.

ОЗОН – модификация кислорода, который обеспечивает сохранение жизни на Земле т.к. озоновый слой атмосферы задерживает часть ультрафиолетовой радиации Солнца и поглощает инфракрасное излучение Земли, препятствуя её охлаждению. Это газ синего цвета с резким запахом. Основная масса озона получается из кислорода при электрических разрядах в атмосфере на высотах 20-30км. Кислород поглощает ультрафиолетовые лучи, при этом образуется озон молекулы, которого состоят из трёх атомов кислорода. Он предохраняет всё живое на Земле от вредного воздействия коротковолновой ультрафиолетовой радиации Солнца. В вышележащих слоях для образования озона не хватает кислорода, а в расположенных ниже – ультрафиолетовой радиации. В небольших количествах озон присутствует и в приземном слое воздуха. Общее содержание озона во всей атмосфере соответствует слою чистого озона толщиной 2 – 4 мм., при условии, что давление и температура воздуха такие же, как у поверхности Земли. Состав воздуха при подъёме даже на несколько десятков километров (до 100м) меняется мало. Но ввиду того, что с высотой воздух разряжается, содержание каждого газа в единице объёма уменьшается (падает атмосферное давление). К примесям принадлежит: Озон, выделяемые растительностью фитонциды, газообразные вещества, образующиеся в результате биохимических процессов и радиоактивного распада в почве и др. Озон используют для обеззараживания питьевой воды, обезвреживания промышленных сточных вод, для получения камфоры, ванилина и других соединений, для отбеливания тканей, минеральных масел и др.

УГЛЕКИСЛЫЙ ГАЗ (углерода оксид) – бесцветный без запаха газ, ниже -78,5 0 С существует в твёрдом виде (сухой лёд). Он в 1,5 раза тяжелее воздуха и содержится в воздухе (0,35% по объёму), в водах рек, морей и минеральных источников. Углекислый газ используют в производстве сахара, пива, газированных вод и шипучих вин, мочевины, соды, для тушения пожаров и др.; сухой лёд – хладагент. Образуется при гниении и горении органических веществ, при дыхании животных организмов, он ассимилируется растениями и играет важную роль в фотосинтезе. Важность процесса фотосинтеза в том, что растения выделяют в воздух кислород. Вот почему недостаток углекислого газа представляет опасность. Углекислый газ выдыхают люди (3,4 – 4,7 % выдыхаемого воздуха), животные, он выделяется так же при сжигании угля, нефти и бензина,

Поэтому в следствии интенсивного сжигания минерального топлива за последние годы количество углекислого газа в атмосфере увеличилось. Повышение содержания углекислого газа в атмосфере приводит к глобальной опасности для людей – парникового эффекта. Углекислый газ как парниковое стекло пропускает солнечные лучи, но задерживает тепло нагретой поверхности Земли. В результате этого повышается средняя температура воздуха,

Ухудшается микроклимат, который влияет на здоровье человека. Ежегодно в результате фотосинтеза поглощается около 300 млн. т. углекислого газа и выделяется около 200 млн. т. кислорода, получается около 3000 млрд. т. углекислого газа и его количество постоянно увеличивается. Если 100 лет тому назад содержание углекислого газа в воздухе было 0,0298 % теперь 0,0318 %. В городах это содержание ещё выше.

Интересно, что акселирацио – ускоренный рост детей, особенно в городах – некоторые учёные связывают с повышением содержания углекислого газа в атмосфере. Даже небольшое, увеличение количества углекислого газа в воздухе значительно усиливает дыхательный процесс, начинается быстрый рост грудной клетки и соответственно всего организма.

Углекислый газ в 1,5 раза тяжелее воздуха и поэтому может накапливаться в нижней части замкнутых пространств. Эти свойства могут способствовать отравлениям вне населённых пунктах в атмосфере воздуха имеется 0,03 – 0,04 % углекислого газа; в промышленных центрах содержание его возрастает до 0,06 %, а вблизи предприятий чёрной металлургии – до 1%.

Увеличение концентрации углекислого газа во вдыхаемом воздухе приводит к развитию ацидоза, учащению дыхания и тохакардии. При увеличении концентрации до 1-2% работоспособность снижается, у части людей появляются токсические действия, при концентрации более 2-3% интоксикация более выражена. При «свободном выборе» газовой среды люди начинают избегать углекислого газа лишь тогда, когда его концентрация достигнет 3%. При концентрации 10-12% наступает быстрая потеря сознания и смерть.

Описаны случаи тяжёлых отравлений углекислым газом в замкнутых или герметически закрытых помещениях (шахты, рудники, подводные лодки), а так же ограниченных пространствах где имело место интенсивное разложение органических веществ - глубокие колодцы, силосные ямы, бродильные чаны на пивоваренных заводах, канализационные колодцы и др. Учитывая приведённые данные считают, что на производствах где имеются источники углекислого газа, в космических кораблях, на подводных лодках его концентрация не должна превышать 0,5-1%. В убежищах, а так же в других критических условиях можно допустить, что концентрация углекислого газа до 2%.

АЗОТ – газ без цвета и запаха, он основной компонент воздуха (78,09 % по объёму), входит в состав всех живых организмов (в организме человека около 3% по массе азота, в белках до 17%), участвует в круговороте веществ в природе. Основная область применения – синтез аммиака; соединения азота – азотные удобрения. Азот – инертная среда в химических и металлургических процессах, в овощехранилищах и т.д.

Азот и другие инертные газы при нормальном давлении физиологически не деятельны, их значение заключается в разбавлении кислорода.

АРГОН – инертный газ, в воздухе 0,9% по объёму, плотность 1,73 г/л. Используется в промышленности в аргоновом сваривании, при химических процессах, для заполнения электрических ламп и газоразрядных трубок.

Чистый воздух

Воздух необходим для жизни, так как без него человек может прожить в среднем до 5 минут. Соответственно, загрязнение воздуха является одной из наиболее серьёзных экологических проблем для общества, вне зависимости от уровня его экономического развития. Не менее 500 млн. людей ежедневно подвергаются воздействию высоких уровней загрязнителей воздуха внутри своих домов в форме дыма – от открытого огня или плохо сконструированных печей. Более 1500 людей живут в урбанизированных регионах с угрожающе высокими уровнями воздушного загрязнения. Промышленное развитие связано с выбросами в атмосферу огромного количества газа и твёрдых частиц, как отходов самого производства, так и от продуктов сгорания топлива на транспорте и в энергетике. После внедрения технологии управления загрязнением воздуха посредством уменьшения выбросов твёрдых частиц специалисты обнаружили, что выбросы газов всё равно продолжаются и именно они являются причиной проблемы как таковой. Недавние усилия по управлению выбросами и твёрдых и газообразных частиц были достаточно успешными в большинстве развитых странах, однако имеются доказательства того, что загрязнение воздуха представляет риск для здоровья даже при относительно благоприятных экологических условиях.

Первоначально быстро развивающиеся страны не имели возможностей инвестировать достаточное количество ресурсов в контроль загрязнения воздуха из за других экономических и социальных приоритетов. Быстрая экспансия в таких странах стала в то же время первопричиной увеличения количества транспортных средств, повышения непромышленного энергопотребления и повышенной концентрации населения в больших урбанизированных регионах (мегаполисах). Всё это – в достаточной степени способствовало появлению такой экологической проблемы, как загрязнение воздуха.

Во многих традиционных обществах, где источники энергии для домашнего хозяйства считались чистыми, сейчас они используются уже не так широко, как в прошлые годы, по причине неэффективности и вредности, с современной точки зрения, видов топлива, применяемых для обогрева зданий и приготовления пищи. Перечисленные обстоятельства служат причиной загрязнения, как наружного воздуха, так и воздуха внутри помещений, что может привести к болезням лёгких, проблемам со зрением (раздражение слизистой оболочки глаз и т. п.) и увеличению риска раковых заболеваний.

Качество воздуха внутри помещений остаётся острой проблемой для многих развитых стран, т.к. жилые и производственные здания герметичны и хорошо отапливаемы. Опасность попадания в воздух вредных химических соединений исходит не только из системы отопления и приготовления пищи, но так же от курения испарений строительных материалов. И всё это скапливается внутри домов и создаёт проблему загрязнения.

Строение атмосферы

Атмосфера состоит из отдельных слоёв, концентрических сфер, которые отличаются друг от друга по высоте от поверхности Земли, по характеру изменения температуры, по газовому составу. Различают: - тропосферу; -стратосферу; - мезосферу; - термосферу; - экзосферу.

Нижний слой атмосферы называется тропосферой (от греческого «тропэ» - поворот) Масса её составляет 80% от массы атмосферы. Верхняя граница тропосферы зависит от географической широты:

В тропических широтах (экватора) высота от поверхности Земли 18 – 20 км.;

В умеренных широтах высота от поверхности Земли около 10 км.;

В полярных широтах (на полюсах) высота от поверхности Земли 8 – 10 км.

От времени года:

Верхняя граница тропосферы (тропопауза – от греческого «паузис» - прекращение) в Северном полушарии зимой благодаря охлаждению поднимается на 2 - 4 км.

Верхняя граница тропосферы (тропопауза) в Северном полушарии летом благодаря потеплению понижается на 2 – 4 км.

Тропосфера получает тело снизу от Земли, которая, в свою очередь нагревается солнечными лучами. Непосредственно за счёт поглощения солнечных лучей воздух нагревается в десятки раз меньше, чем от Земли. По мере увеличения высоты температура воздуха понижается в среднем на 0,6 0 С на каждые 100 м. подъёма.

На верхней границе тропосферы температура достигает -60 0 С этому способствует то, что воздух поднимаясь, расширяется и охлаждается. Он был бы ещё холоднее, если бы не тепло, которое выделяется при конденсации водных паров.

На высоте 10 км. температура тропосферы летом равна -45 0 С а зимой -60 0 С.

Выше тропосферы располагается слой воздуха с постоянно низкой температурой – тропопауза. В тропиках, где солнечные лучи падают отвесно, или почти отвесно, а суша и море нагреваются сильнее, этот слой находится на высоте 18 – 20 км. В полярных областях, где косые лучи слабо нагревают Землю, тропопауза расположена ниже – на высоте 8 – 10 км.

Именно в тропосфере в основном формируется погода , которая определяет условия существования человека.

Большая часть атмосферного водяного пара сосредоточена в тропосфере, и поэтому здесь главным образом и формируются облака, хотя некоторые из них, состоящие из ледяных кристаллов, встречаются и более высоких слоях.

Нагревание атмосферы в разных частях Земли неодинаково, что способствует развитию общей циркуляции атмосферы Земли, тесно связанной с распределением атмосферного давления. Это давление атмосферного воздуха на находящиеся в ней предметы и на земную поверхность.

В каждой точке атмосферы атмосферное давление равно весу вышележащего столба воздуха, которое с высотой убывает. Среднее давление на уровне моря эквивалентно давлению 760 мм ртутного столба (1013,25 гПа).

Распределение атмосферного давления на поверхности Земли (на уровне моря) характеризуется относительно низким значением вблизи экватора, увеличением в субтропиках и понижением в средних и высоких широтах. При этом над материковыми нетропическими широтами атмосферное давление зимой обычно повышено, летом понижено. Под действием перепада давления воздух испытывает ускорение, направленное от высокого давления к низкому. При движении воздуха на него действуют вызванные вращением Земли Кориолиса силы и центробежная сила, а так же сила трения.

Всё это обуславливает сложную картину воздействия в атмосфере Земли, некоторые из них сравнительно устойчивые (например, пассаты и муссоны). В средних широтах преобладает воздушное течение с Запада на Восток, в которых возникают крупные вихри – циклоны и антициклоны, обычно простирающиеся на сотни и тысячи километров.

Для тропосферы характерны турбулентность и мощные воздушные течения (ветры) и штормы. В верхней тропосфере существуют сильные воздушные течения строго определённого направления. Турбулентные вихри, образуются под воздействием трения и динамического взаимодействия между медленно и быстро двигающимися воздушными массами. Поскольку в этих высоких слоях облачности обычно нет, такую турбулентность называют «турбулентностью ясного неба».

Стратосфера

Выше тропосферы расположена стратосфера (от греческого «стратиум» - настил, слой). Её масса составляет 20% от массы атмосферы.

Верхняя граница стратосферы расположена от поверхности Земли на высоте:

В тропических широтах (экваторе) 50 – 55 км.:

В умеренных широтах до 50 км.;

В полярных широтах (полюсах) 40 – 50 км.

В стратосфере воздух по мере подъёма нагревается, при этом температура воздуха повышается с высотой в среднем на 1 – 2 градуса на 1 км. подъёма и достигает на верхней границе до +50 0 С.

Повышение температуры с высотой обусловлено главным образом озоном, который поглощает ультрафиолетовую часть солнечной радиации. На высоте 20 – 25 км от поверхности Земли расположен очень тонкий (всего несколько сантиметров) озоновый слой.

Стратосфера очень бедна на водяной пар, здесь не бывает осадков, хотя иногда на высоте 30 км. образуются облака.

На основе наблюдений в стратосфере установлены турбулентные возмущения и сильные ветры, дующие в разных направлениях. Как и в тропосфере, отмечаются мощные воздушные вихри, которые особо опасны для высокоскоростных летательных аппаратов.

Сильные ветры, называемые струйными течениями дуют в узких зонах вдоль границ умеренных широт, обращенных к полюсам. Однако эти зоны могут смещаться, исчезать и появляться вновь. Струйные течения обычно проникают в тропопаузу и появляются в верхних слоях тропосферы, но их скорость быстро уменьшается с понижением высоты.

Возможно, часть энергии, поступающей в стратосферу (главным образом затрачиваемой на образования озона) связано атмосферными фронтами, где обширные потоки стратосферного воздуха были зарегистрированы существенно ниже тропопаузы, а тропосферный воздух вовлекается в нижние слои стратосферы.

Мезосфера

Выше стратопаузы расположена мезосфера (от греческого «мезос» - средний).

Верхняя граница мезосферы расположена на высоте от поверхности Земли:

В тропических широтах (экваторе) 80 – 85 км.;

В умеренных широтах до 80 км.;

В полярных широтах (полюсах) 70 – 80 км.

В мезосфере температура понижается до – 60 0 С. – 1000 0 С. на её верхней границе.

В полярных регионах летом в мезопаузе часто появляются облачные системы, которые занимают большую площадь, но имеют незначительное вертикальное развитие. Такие светящиеся по ночам облака часто позволяют обнаруживать крупномасштабные волнообразные движения воздуха в мезосфере. Состав этих облаков, источники влаги и ядер конденсации, динамика и связь с метеорологическими факторами пока ещё недостаточно изучены.

Термосфера

Выше мезопаузы расположена термосфера (от греческого «термос» - тёплый).

Верхняя граница термосферы расположена на высоте от поверхности Земли:

В тропических широтах (экваторе) до 800 км.;

В умеренных широтах до 700 км.;

В полярных широтах (полюсах) до 650 км.

В термосфере температура снова повышается, достигая в верхних слоях 2000 0 С.

Необходимо заметить, что высотах 400 – 500 км. и выше температура воздуха не может быть определена ни одним из известных методов, вследствие чрезвычайного разряжения атмосферы. О температуре воздуха на таких высотах приходится судить по энергии газовых частиц, перемещающихся в газовых потоках.

Повышение температуры воздуха в термосфере связано с поглощением ультрафиолетового излучения и образованием ионов и электронов в атомах и молекулах газов содержащихся в атмосфере.

В термосфере давление и, следовательно, плотность газа с высотой постепенно уменьшается. В близи земной поверхности в 1 м 3 . воздуха содержится около 2,5х10 25 молекул, на высоте около 100 км в нижних слоях термосферы в 1 м 3 воздуха содержится около 2,5х10 25 молекул. На высоте 200 км., в ионосфере в 1 м 3 . воздуха содержится 5х10 15 молекул. На высоте около 850 км. в 1м. воздуха содержится 10 12 молекул. В межпланетном пространстве концентрация молекул составляет 10 8 - 10 9 на 1 м 3 . На высоте около 100 км. количество молекул невелико, но они редко сталкиваются между собой. Среднее расстояние, которое преодолевает хаотически двигающаяся молекула до столкновения с другой такой же молекулой, называется её средним свободным пробегом.

При определённой температуре скорость движения молекулы зависит от массы: более лёгкие молекулы движутся быстрее тяжёлых. В нижней атмосфере, где свободный пробег очень короткий, не наблюдается заметного разделения газов по их молекулярному весу, но оно выражено выше 100 км. Кроме этого, под воздействием ультрафиолетового и рентгеновского излучения Солнца молекулы кислорода распадаются на атомы, масса которых составляет половину массы молекулы. Поэтому по мере удаления от поверхности Земли атмосферный кислород приобретает всё большее значение в составе атмосферы на высоте около 200 км. становится главным компонентом.

Выше, приблизительно на расстоянии 1200 км. от поверхности Земли преобладают лёгкие газы гелий и водород. Из них и состоит внешняя оболочка атмосферы.

Такое расширение по весу называется диффузным расширением, напоминает разделение смесей с помощью центрифуги.

Экзосфера

Выше термопаузы расположена экзосфера (от греческого «экзо» - снаружи, вне).

Это внешняя сфера, из которой лёгкие атмосферные газы (водород, гелий, кислород) могут вытекать в космическое пространство.

Слои атмосферы располагающиеся выше 50 км. проводят электричество и отражают радиоволны. Это позволяет налаживать дальнюю радиосвязь вокруг Земли. Поскольку при сложных химических реакциях образуются ионы – верхнюю часть атмосферы (мезосферу и термосферу) называют ионосферой.

Под воздействием солнечной радиации в верхних слоях атмосферы часто возникают свечения. Самое эффективное из них полярное сияние.

Молекулы и атомы в экзосфере вращаются вокруг Земли по баллистическим орбитам под воздействием силы тяжести. Некоторые из этих орбит могут вращаться вокруг Земли и по эллиптическим орбитам, как спутники. Некоторые молекулы, в основном водород и гелий имеют разомкнутые траектории и уходят в космическое пространство.

Понравилась статья? Поделиться с друзьями: